
 
The Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian (LQG) control design are 
easy to use methods for designing controls to stabilize and regulate systems. The LQR is simply state-
feedback. The LQG is used when the plant states are not directly available for measurement. It 
consists of two steps: the design of an LQR state-feedback controller, and the design of a Kalman-
Filter observer in order to estimate the state vector. The state-feedback and the estimator are 
combined together to create an output feedback dynamic controller in state-space form. 
 
1. Linear Quadratic Regulator 
 
The Linear Quadratic Regulator (LQR) is used to design state-feedback control gains that stabilize a 
plant model, achieve good closed-loop performance of the states in response to transients and 
robustness to parameter uncertainties. It requires a plant model in state-space form. The plant inputs 
are the controls and the outputs are either measurements or criteria to be optimized. The plant must 
be stabilizable from the controls and detectable from the outputs. The control solution is a feedback 
from the plant states derived by the optimization of a linear quadratic performance index using the 
Riccati equation. The optimization takes into consideration two important and most frequently 
conflicting requirements: the speed of convergence of the state-vector from some initial value and 
the amount of the control input along a trajectory. We will present the analytic solutions for both the 
continuous and discrete LQR problems.  
 
1.1 The Continuous Asymptotic LQR Problem 
 
Equation 1.1.1 represents the plant dynamics in state-space form 
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Where:   
x(t)  is the state of dimension n 
u(t)  is the control of dimension m 
y(t)  is the output  of dimension r 
 
The LQR method calculates a state-feedback optimal control uo(t) that minimizes the quadratic 
performance index J in equation 1.1.3. 
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Where: the matrices Q and R, are defined to be the output and control weight matrices. They are 
used as knobs which adjust the closed-loop system’s response to initial states x0 or to disturbances. 
They trade performance in the output vector y(t) in terms of speed of convergence versus the 
magnitudes of control u(t). The (r x r) matrix Q should be symmetric, positive semidefinite, and the 
matrix R (m x m) should be symmetric positive definite.  

Selecting a small R or a large Q in the LQR design, it is telling the mathematics that when the control 
loop is closed and the system is initialized at some initial state x(0), I would like the output response 
y(t) to convergence fast to the commanded value with small transients, regardless of how much 
control force u(t) is necessary to achieve this. This results in a high bandwidth control system and 
possibly effector saturation.  

If on the other hand a large R or small Q are used in equation 1.1.3, the magnitudes of the control u(t) 
are penalized more than the output transients y(t) in the performance index. It indicates that my 
actuators do not have as much strength to handle disturbances or big commands. The closed-loop 
system’s response to disturbances will be slower, resulting in a reduced control system bandwidth 
that will protect the actuators from saturating. 

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is 
detectable where D is defined by equation 1.1.4. it means that all unstable plant modes must be 
controllable and measurable. 

D D C QCT T=         (1.1.4) 

Notice, that the variable y(t) used in the optimization criterion is not necessarily the plant output. Any 
combination of output variables, not necessarily measurable, represented by a matrix C1, different 
than C, can be used in the optimization criterion, as long as the plant states are detectable from C1. C1 
may also be the identity matrix, in which case the state variables are directly and individually 
penalized in the performance index via matrix Q. 

The state-feedback gain Kc of equation 1.1.2 is calculated from equation 1.1.5, and the (n x n) matrix 
P is obtained from the steady-state solution of the Riccati Equation 1.1.6 
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Furthermore if the problem is initialized with an initial state error x(0)=x0, then the performance 
index criterion is: J = x(0)T P x(0) 

  



1.2 The Discrete Asymptotic Case 
 
In the discrete case the plant system is represented by the difference matrix equations 1.2.1. 
x k A x k B u k
y k C x k
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Where:   
x(k)  is the state of dimension n 
u(k)  is the control of dimension m 
y(k)  is the output of dimension r 
k represents the present state variable and (k+1) is the next iteration 
 
The Discrete LQR method calculates a state-feedback optimal control uo(k) that minimizes the 
quadratic performance index J in equation 1.2.2. 
 

[ ]
u k K x k

J N y k Q y k u k R u k

o
c

T T
N

( ) ( )

lim( ) ( ) ( ) ( ) ( )

= −

= → ∞ + + +
−

∑ 1 1
0

1    (1.2.2- 3) 

Where: the matrices Q and R, are defined as in the continuous case. The (m x n) state feedback gain 
matrix Kc is obtained from equation 1.2.4, where: the (n x n) matrix P is obtained from the solution of 
the discrete steady-state Riccati Equation 1.2.5 
 

( )
[ ] [ ]

K R B P B B P A

P A B K P A B K K R K C QC

c
T

k
T

k

k c k c c
T

c
T

= +

= − − + + =

+

−

+

−
+

1

1

1

1
1 0

    (1.2.4- 5) 

 
Where: k= 0, 1, 2, 3, …, N-1 

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is 
detectable, where D is defined by equation 1.2.6. This means that all unstable plant modes must be 
controllable and measurable. 

D D C QCT T=          (1.2.6) 
 
Furthermore if the problem is initialized with an initial state error x(0)=x0, then the performance 
index criterion is: J = x(0)T P(0) x(0) 

  



2. The Finite-Time LQR with Terminal State Penalty 
 
The finite-time or transient deterministic optimal linear quadratic regulator problem is essentially 
similar to the steady-state case described in section 1. The difference is that an additional term is 
included in the performance index that penalizes the value of the state-vector x(tf) at the terminal 
time tf. The resulting state-feedback control law Kc(t) is time-varying. 
 
2.1 The Continuous Transient LQR Problem 
 
The plant dynamics in state-space form is the same as before and the system is initialized at x(0)=x0 
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Where:   
x(t)  is the state of dimension n 
u(t)  is the control of dimension m 
y(t)  is the output  of dimension r 
w(t) is white noise with intensity V(t) 
 
The Transient LQR solution calculates a state-feedback optimal control uo(t) that minimizes the 
quadratic performance index J in equation 2.1.3. 
 

[ ]
u t K t x t where

J y t Q y t u t R u t dt x t P x t

c

T T
t

f
T

f

f

0

0
1

( ) ( ) ( ) :

( ) ( ) ( ) ( ) ( ) ( )

= −

= + +∫    (2.1.2- 3) 

Where: (tf) is a known terminal time. The matrices Q and R are the output and control weight 
matrices as already described in Section 1. P1 is a weight matrix that penalizes the terminal state. 
These matrices determine the optimal trade-off between: the output y(t) deviations from zero along 
the trajectory, the magnitude of control input u(t), and the dispersion of the terminal state vector 
x(tf) from zero at the end-time.  
 
Matrix Q is (r x r) and should be symmetric positive semidefinite,  
Matrix R is (m x m) and should be symmetric positive definite,   
Matrix P1 is (n x n) and should be symmetric positive semidefinite 
 
  



The (m x n) state feedback gain matrix Kc(t) is obtained from equation 2.1.4, where: the (n x n) matrix 
P(t) is obtained from the solution of the transient Riccati Equation 2.1.5 
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The equation 2.1.5 is solved backwards in time after being initialized at the terminal time tf where: 
P(tf) = P1 
 
Furthermore the performance index criterion J is 
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Solution of the Continuous Transient LQR  
 
The following algorithm, from reference [1], is used to solve the transient regulator problem. Let us 
define a matrix Z where: 
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Matrix Z has the property that if α is an eigenvalue of Z, -α is also an eigenvalue of Z. We can find the 
eigenvector matrix W such that 
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Where: Λ is a diagonal matrix consisting of the positive eigenvalues of Z, and - Λ consisting of the 
negative eigenvalues of Z. Then we partition the (2n x 2n) matrix W into four (n x n) blocks as shown 
in equation 2.1.9  
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The solution P(t) of the Riccati equation 2.1.5 is obtained from equation 2.1.10, where 
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From equation (2.1.11) as (tf) approaches infinity, G(tf-t) approaches zero, and the steady-state 
solution of the Riccati equation becomes: P W W= −

22 12
1    



2.2 The Discrete Time Transient LQR  
 
In the Discrete Transient LQR design case the plant system is represented by the difference matrix 
equations 2.2.1 
 
x k A x k B u k w k
y k C x k
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     (2.2.1) 

Where: 
   
x(k)  is the state of dimension n 
u(k)  is the control of dimension m 
y(k)  is the output of dimension r 
w(k) is zero mean white noise with variance V(t) 
 
We must calculate a state-feedback optimal control uo(k) that minimizes the quadratic performance 
index J in equation 2.2.3. 
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The matrices Q and R and PN are defined as in the continuous case. The discrete optimal regulator 
solution is obtained from the difference equation 2.2.4 solved backwards in time, initialized at N with 
P(N)=PN. The (n x n) matrix P(k) is obtained from the solution of the discrete transient Riccati 
Equation 2.2.5, where: k=0, 1, 2,…, N-1 
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Furthermore if the problem is initialized with an initial state error x(0)= x0, then the performance 
index criterion is 
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3. The Asymptotic Kalman-Bucy State-Estimator, Observer 
 
In the previous two sections we demonstrated how to design optimal state-feedback controllers, 
assuming that the state vector can be measured accurately and be available for feedback. This 
assumption is most often unrealistic because in most systems the state vector is not directly 
measurable but the output measurements consist of a linear combination of the states. We therefore 
need to design an observer, which is a system that will approximately reconstruct the state vector 
from the plant output, and this will allow us to apply our optimal state-feedback control laws. In this 
section we will present the design of the steady-state Kalman-Bucy filter that is used to reconstruct 
an approximation of the state vector from the measured system output that will converge to the 
state vector. We shall also assume that the system is corrupted by two types of noises: measurement, 
and state excitation noise. They are both white, zero mean and are not correlated. We will first 
analyze the continuous and then the discrete Kalman-Filter observer for continuous and discrete 
systems. 
 
3.1 The Continuous Kalman-Bucy Filter 
 
Let us consider the following plant in state-space form. This system is affected by disturbances w(t) 
and the observations y(t) are corrupted by noise v(t) 
 
( ) ( ) ( ) ( )
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Where: 
 
x(t) is the state vector of dimension n. 
u(t) is the control input vector of dimension m. 
w(t) is the process noise of dimension l (l≤n) and covariance matrix Qpn, where Qpn=Q'pn≥0. 
y(t) is the measurement vector of dimension r (r≤n). 
v(t) is the measurement noise with intensity Rmn=R'mn≥0. 
 
The purpose of the optimal Kalman Filter estimator is to construct an estimate of the state x 
operating over the time range [t0->t] such that the index J in equation 3.1.2 is minimized, where: 𝑥𝑥�(𝑡𝑡) 
denotes the estimate of x(t). E is the expected value, and the matrix W is (n x n) positive semi-
definite. 

( ) ( )[ ]J t E x t x t W x t x tT= → ∞ − −lim( ) ( ) ( ) ( ) ( )0    (3.1.2) 

 
The solution exists when the pair (AT,CT) is stabilizable and the pair (A,D) is detectable 
Where: D D'= G Qpn GT 
 
  



After initializing with the expected value of the initial state: [ ]( ) ( )x E x0 0= , the state estimate is 
computed by the following differential equation 3.1.4. This equation can also be written as in 3.1.5 to 
show that the inputs to the estimator are the plant control vector u(t) and the measurements y(t), as 
shown in figure (3.1)  
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The steady-state Kalman-Filter gain Kf is obtained from equation 3.1.6, where matrix P is symmetric 
positive semi-definite and is obtained from the steady-state solution of the Asymptotic Riccati 
Equation 3.1.7 
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The mean square reconstruction error is shown in equation 3.1.8 

( ) ( )[ ] [ ]J t E x t x t W x t x t trace PWT= → ∞ − − =lim( ) ( ) ( ) ( ) ( )    (3.1.8) 

 

 
Figure 3.1 Functional Block Diagram of the Kalman-Filter Steady-State Observer  

The optimal observer described provides a compromise between the speed of state reconstruction 
and the immunity to measurement noise. The balance between these two properties is determined 
by the magnitudes of the white noise intensity matrices Qpn and Rmn that can be adjusted to satisfy 
design requirements. Decreasing Rmn and increasing Qpn improves the speed of state reconstruction 
and shifts the observer poles further to the left side of the complex plane but the observer becomes 
more vulnerable to observation noise.  



3.2 The Discrete-Time Kalman-Bucy Filter 
 
The steady-state Kalman-Filter estimator for the discrete plant is obtained in a similar fashion. The 
dynamic model for the discrete plant is defined by the difference equations 3.2.1, where the vectors 
x, w, v, and y are defined as in the continuous equation 3.1.1. 
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The discrete optimal Kalman Filter estimator problem is to construct an estimate of the state 𝑥𝑥�(𝑘𝑘) 
from previous measurements of the output vector [y(0), y(1)...y(k-1)] such that the quantity J in 
equation 3.2.2 is minimized, where E denotes the expected value, and W is (n x n) positive semi-
definite matrix. 

( ) ( )[ ]J k E x k x k W x k x kT= → ∞ − −lim( ) ( ) ( ) ( ) ( )0     (3.2.2) 

The solution exists when the pair (AT, CT) is stabilizable and the pair (A, D) is detectable 
Where: D D'= G Qpn GT 
 
After initializing with the expected value of the initial state: [ ]( ) ( )x E x0 0= , the state estimate is 
computed by the following difference equation 3.2.4. This equation can also be written as in 3.2.5 to 
show that the inputs to the estimator are the plant control vector u(k) and the measurements y(k). 
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The Kalman-Filter gain Kf is calculated from equation (3.2.6), where matrix P represents the steady-
state variance of the state-vector reconstruction error. It is symmetric positive semi-definite and is 
obtained by solving asymptotically the recursive Riccati Equation 3.2.7. 
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The initial state of the estimator must be set equal to the plant state: 𝑥𝑥�(0) = 𝑥𝑥0. The following result 
is also true 

( ) ( )[ ]J k E x k x k W x k x k trace PWT= → ∞ − − =lim( ) ( ) ( ) ( ) ( ) [ ]0   



4. Linear Quadratic Gaussian Output Feedback Control 
 
The Linear Quadratic state-feedback controller and the Kalman-Filter results obtained from Sections 1 
and 3 are now combined together to create an output feedback dynamic controller. Let us again 
consider the state-space plant model that we want to control. 
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y t C x t

= +
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Where:   
x(t)  is the plant state of dimension n 
u(t)  is the plant control input of dimension m 
y(t)  is the plant output of dimension r 
 
The optimal steady-state, state-feedback control u t K x to

c( ) ( )= − was derived in Section 1, and the 
Kalman-Filter observer was described in Section 3. 
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Since the state vector x(t) is not directly available for measurement, we will use the estimated state 
vector and apply the control feedback trough the estimated state rather than the actual state

u t K x to
c( ) ( )= −          (4.1.5) 

 
The block diagram in Figure 4.1a shows the state-estimator and the state-feedback controller 
operating in closed loop form around the plant. Figure 4.1.b is the same system but the observer and 
the state-feedback gain are combined together as a single dynamic control system that provides 
feedback from the plant output instead of the states. The closed loop dynamic model is obtained by 
combining the plant and Kalman-Filter equations in a (2n x 2n) system 4.1.6. 
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After considering the state reconstruction error e t x t x t( ) ( ) ( )= − we obtain equation 4.1.7 
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The eigenvalues of the system in equation 4.1.7 consist of the eigenvalues of det(sI-A+BKc) plus the 
eigenvalues of det(sI-A+KfC). Consequently the closed loop system comprises the eigenvalues of the 
optimal controller under state feedback, plus the eigenvalues of the observer. This is an important 
principle called the “separation principle", because, if we design a stable state-feedback controller 
and an asymptotically stable observer independently, the resulting interconnection system, 
equations (4.1.6) or (4.1.7), is an asymptotically stable system. 



 

 
Figure 4.1a Structure of the Output Feedback Dynamic Controller Consisting of the Kalman-Filter Estimator 
and the State-Feedback Gain Kc 

 
Figure 4.1b Closed-Loop System with Dynamic Controller in State-Space Form Providing Feedback from the 
Plant Output 

  



5. Linear Quadratic Control Program 
 
The Flixan Linear Quadratic Control program implements the four LQG functions described in Sections 
1 through 4. The user must provide the plant model G(s) and the weight matrices described which 
must be included in a systems file (.Qdr). The matrices can also be entered interactively. The program 
calculates the control matrix Kc, the estimator gain Kf or the LQG dynamic control system K(s) and 
saves them in the same systems file. It runs either interactively or in batch mode. When in batch 
mode it processes input datasets from an already created input file (.Inp). The dataset of an operation 
is automatically created and saved in the input file after running it interactively the first time. It can 
be reprocessed multiple times in batch mode which is much faster than interactively. Typically the 
user runs initially the Flixan programs interactively to create the datasets and then when he needs to 
make a modification in the data he may reprocess the datasets in batch mode, either each set 
individually or the entire file using a batch set. The program consists of the following options: 
 

1. The Asymptotic LQR design for a continuous or discrete time plant described in Section 1. The 
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems 
file, the output weighting matrix Qc, and the control weighting matrix Rc. It solves either the 
continuous or the discrete LQR problem depending on the plant sampling period, which is 
zero when the plant is continuous. It calculates the steady-state LQR state-feedback gain Kc 
and saves it in the systems file (.Qdr). The user may choose between two algorithms for 
solving the asymptotic Riccati equation. 

2. The Transient LQR design for a continuous or discrete time plant described in Section 2. The 
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems 
file, the (r x r) output weighting matrix Qc, the (m x m) control weighting matrix Rc, and the 
(nxn) weighting matrix P1 that penalizes the state vector at the terminal time tf. It requires 
also the initial time-to-go before the final time, and the number of points to calculate the 
state-feedback gains (only when the plant is continuous). It calculates the time-varying gain 
matrix Kc(t) and saves it as a function of time-to-go in Excel format in file “Gains.Txt”. Tgo is in 
the first column and the gain matrix is printed in rows. 

3. The Kalman-Filter State Estimator for a continuous or discrete time plant described in Section 
3. The program reads the continuous G(s) or discrete G(z) plant state-space model from the 
systems file, the (nxl) input noise matrix G, the (rxr) process noise intensity matrix Qpn, and the 
(mxm) measurement noise covariance matrix Rmn. It solves either the continuous or the 
discrete KF observer problem, calculates the (nxr) Kalman-Filter gain Kf and saves it in the 
systems file (.Qdr). 

4. The Dynamic Output Feedback Controller that is described in Section 4. The program 
combines the results obtained in steps 1 and 3, which are: the state-feedback gain Kc and the 
Kalman-Filter gain Kf, to synthesize a steady-state control system in the situation when the 
state-vector is not available for measurement. It reads the two matrices from the systems file 
(.Qdr), calculates the output-feedback controller K(s) in state-space form and saves it in the 
same systems file. 

 
  



The in-between program calculations, such as matrix P, errors in the Riccati solution, closed-loop 
system eigenvalues, etc. are saved in file “LQC.Out” after execution. The analyst may check this file to 
make sure that no errors have occurred, eigenvalues are stable, matrix P is symmetric, etc. It is also 
important to check the plant’s controllability and observability because the success of the solutions 
depends on that. It is the first option in the menu of the Linear Quadratic Control design program and 
it is only available in the interactive version when you begin analyzing the system, since it is not 
necessary to rerun it interactively when you reprocess the dataset in batch mode. 
 
5.1 Running the Program Interactively 
 
The Linear Quadratic Control design program is selected from the Flixan main menu by going to 
“Program Functions”, “Robust Control Synthesis Tools”, and then “Linear Quadratic Control Design”, 
as shown below. Select the input filename to save the operation dataset and the systems filename 
where it will read and write the systems and matrices, and click on “Process Files”. 
 

 
 

 
 
The main LQR control design menu includes several options. Select one of the options, such as: 
Steady-State LQR design in this case, and click on “Select”.  



 
 
In this example the input file already contains 2 LQR design datasets. You can either process one of 
the 2 existing datasets or you can create a new dataset by clicking on “Make a New Set Interactively”. 
Choose the second option and from the next menu select the title of the plant model that will be 
stabilized by LQR, “Simple End-Game Model” in this example. 
 

 

 
 
  



The new LQR design dataset like all datasets requires a title. Enter its title in the following dialog and 
click “OK”. It can be used to reprocess this operation in the future when you run the program in batch 
mode.  

 
 
The next step is to select the output criteria to be optimized. You can either use the output matrix C, 
the identity matrix, or define a new set of output criteria by picking a different matrix C1, as shown. 

 
 
The following menu is used to select the output criteria matrix C1 from the systems file. If the matrix 
is not in file you may create it interactively by adding a new matrix. The program checks the system’s 
observability from matrix C1, which is okay in this case.  

 
 



You must also select the two weight matrices Qc and Rc from the systems file. The (3x3) matrix Qc 
penalizes the 3 criteria outputs which are specified by the output matrix C1, and the (2x2) matrix Rc 
penalizes the control inputs which are 2 in this example. 
 

 

 
 
We must finally select the algorithm to solve the asymptotic Riccati equation. The program provides 2 
options. Laub’s algorithm is chosen in this case. We must also enter a title for the state-feedback gain 
Kc that will be saved in the systems file. All systems and matrices need a title in a (.Qdr) file. 

 

  



The following LQR design dataset was created in the input file (.Inp) that can repeat this operation in 
the future. The dataset includes a label on the top: “LINEAR QUADRATIC REGULATOR …” that 
specifies which Flixan program will process the dataset, and a title “LQR Control Design 5 for Simple 
...”. The green comments were added later. It can be used to reprocess the data in batch mode. 

 

The (2x4) state-feedback gain matrix Kc was saved in the systems file (.Qdr) under the specified title. 
The comments are transferred from the input dataset to the matrix in the systems file. The 
definitions of the matrix inputs and outputs are determined from the plant model variables. 

 

  



5.1 Running the Program in Batch Mode 
 
To run a previously created dataset, such as an LQR design, for example, you must first select the 
project directory, and from the Flixan main menu, go to “File Management”, “Managing Input Files”, 
and then “Edit/ Process Input Data Files”, as shown below. 
 

 
 
The input file management utility dialog comes up and from the left menu select the input file that 
contains the datasets for this project by clicking on “Select Input File”. The menu on the right fills with 
the titles of the datasets which are included in the input file. Select one of the titles, an LQR Control 
Design in this example, and click on “Process Input Data”. The program will calculate the LQR gain 
matrix Kc and save it in the systems file, as before. You may then select another dataset, such as a 
Transient LQR or State Estimator, and process them also. If you include a batch set, such as the one 
shown here at the top, you may select it to instantly process the entire input file. 
 

 
 


