Linear Quadratic Control Design

The Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian (LQG) control design are
easy to use methods for designing controls to stabilize and regulate systems. The LQR is simply state-
feedback. The LQG is used when the plant states are not directly available for measurement. It
consists of two steps: the design of an LQR state-feedback controller, and the design of a Kalman-
Filter observer in order to estimate the state vector. The state-feedback and the estimator are
combined together to create an output feedback dynamic controller in state-space form.

1. Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is used to design state-feedback control gains that stabilize a
plant model, achieve good closed-loop performance of the states in response to transients and
robustness to parameter uncertainties. It requires a plant model in state-space form. The plant inputs
are the controls and the outputs are either measurements or criteria to be optimized. The plant must
be stabilizable from the controls and detectable from the outputs. The control solution is a feedback
from the plant states derived by the optimization of a linear quadratic performance index using the
Riccati equation. The optimization takes into consideration two important and most frequently
conflicting requirements: the speed of convergence of the state-vector from some initial value and
the amount of the control input along a trajectory. We will present the analytic solutions for both the
continuous and discrete LQR problems.

1.1 The Continuous Asymptotic LQR Problem

Equation 1.1.1 represents the plant dynamics in state-space form

X(t) = Ax(t)+Bu(t)

y(©) =Cx(t) (1.1.1)
Where:

x(t) is the state of dimension n
u(t) is the control of dimension m
y(t) is the output of dimension r

The LQR method calculates a state-feedback optimal control u°(t) that minimizes the quadratic
performance index J in equation 1.1.3.

u’ (k) = —K.x(k)

2 1.1.2,3
J= j[y(t)TQy(t)+u(t)T Ru(t)]dt ( )



Where: the matrices Q and R, are defined to be the output and control weight matrices. They are
used as knobs which adjust the closed-loop system’s response to initial states xo or to disturbances.
They trade performance in the output vector y(t) in terms of speed of convergence versus the
magnitudes of control u(t). The (r x r) matrix Q should be symmetric, positive semidefinite, and the
matrix R (m x m) should be symmetric positive definite.

Selecting a small R or a large Q in the LQR design, it is telling the mathematics that when the control
loop is closed and the system is initialized at some initial state x(0), | would like the output response
y(t) to convergence fast to the commanded value with small transients, regardless of how much
control force u(t) is necessary to achieve this. This results in a high bandwidth control system and
possibly effector saturation.

If on the other hand a large R or small Q are used in equation 1.1.3, the magnitudes of the control u(t)
are penalized more than the output transients y(t) in the performance index. It indicates that my
actuators do not have as much strength to handle disturbances or big commands. The closed-loop
system’s response to disturbances will be slower, resulting in a reduced control system bandwidth
that will protect the actuators from saturating.

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is
detectable where D is defined by equation 1.1.4. it means that all unstable plant modes must be
controllable and measurable.

D'D=C'QC (1.1.4)

Notice, that the variable y(t) used in the optimization criterion is not necessarily the plant output. Any
combination of output variables, not necessarily measurable, represented by a matrix C;, different
than C, can be used in the optimization criterion, as long as the plant states are detectable from Ci. C1
may also be the identity matrix, in which case the state variables are directly and individually
penalized in the performance index via matrix Q.

The state-feedback gain K. of equation 1.1.2 is calculated from equation 1.1.5, and the (n x n) matrix
P is obtained from the steady-state solution of the Riccati Equation 1.1.6

K., =R™'B'P where:

. 1.15,6
—~P=PA+A"P+C"QC-PBR'B"P=0

Furthermore if the problem is initialized with an initial state error x(0)=xo, then the performance
index criterion is: J = x(0)" P x(0)



1.2 The Discrete Asymptotic Case

In the discrete case the plant system is represented by the difference matrix equations 1.2.1.

x(k +1) = Ax(k) + Bu(k)
y(k)=Cx(k)

Where:

x(k) is the state of dimension n

u(k) is the control of dimension m

y(k) s the output of dimension r

k represents the present state variable and (k+1) is the next iteration

(1.2.1)

The Discrete LQR method calculates a state-feedback optimal control u°(k) that minimizes the
guadratic performance index J in equation 1.2.2.

u° (k) = —K, x(k)

J=lim(N - oo)Nz_l[y(k +1)7Qy(k +1)+u(k)" Ru(k)]

Where: the matrices Q and R, are defined as in the continuous case. The (m x n) state feedback gain
matrix Kc is obtained from equation 1.2.4, where: the (n x n) matrix P is obtained from the solution of
the discrete steady-state Riccati Equation 1.2.5

(1.2.2-3)

-1
K.=(R+B"P.,B) B'P; A (12.4.5)
P =[A-BK,]"P..[A-BK]+K/RK,+C"QC=0

Where: k=0, 1, 2, 3, ..., N-1

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is
detectable, where D is defined by equation 1.2.6. This means that all unstable plant modes must be
controllable and measurable.

D'D=C'QC (1.2.6)

Furthermore if the problem is initialized with an initial state error x(0)=xo, then the performance
index criterion is: J = x(0)" P(0) x(0)



2. The Finite-Time LQR with Terminal State Penalty

The finite-time or transient deterministic optimal linear quadratic regulator problem is essentially
similar to the steady-state case described in section 1. The difference is that an additional term is
included in the performance index that penalizes the value of the state-vector x(tf) at the terminal
time tr. The resulting state-feedback control law Kc(t) is time-varying.

2.1 The Continuous Transient LQR Problem

The plant dynamics in state-space form is the same as before and the system is initialized at x(0)=xo

X(t) = Ax(t)+Bu(t)+w(t)
y(t) =Cx(t) (2.1.1)

Where:

x(t) is the state of dimension n

u(t) is the control of dimension m
y(t) is the output of dimension r
w(t) is white noise with intensity V(t)

The Transient LQR solution calculates a state-feedback optimal control u°(t) that minimizes the
guadratic performance index J in equation 2.1.3.

u’(t) = —K_(t) x(t) where:

J = JE[X('[)T Qy(t)+u(t)’ Rg(t)]dt +x(t,)" P x(t,) (2.1.2-3)

Where: (tr) is a known terminal time. The matrices Q and R are the output and control weight
matrices as already described in Section 1. Py is a weight matrix that penalizes the terminal state.
These matrices determine the optimal trade-off between: the output y(t) deviations from zero along
the trajectory, the magnitude of control input u(t), and the dispersion of the terminal state vector
x(tr) from zero at the end-time.

Matrix Qis (r x r) and should be symmetric positive semidefinite,
Matrix R is (m x m) and should be symmetric positive definite,
Matrix P1 is (n x n) and should be symmetric positive semidefinite



The (m x n) state feedback gain matrix Kc(t) is obtained from equation 2.1.4, where: the (n x n) matrix
P(t) is obtained from the solution of the transient Riccati Equation 2.1.5

K.(t)=R™'B"P(t) where:

. 2.1.4,5
P=PA+A"P+C"QC-PBR'B'P ( )

The equation 2.1.5 is solved backwards in time after being initialized at the terminal time tr where:
P(tf) = P1

Furthermore the performance index criterion J is

3= x(0)" Px(0) + jot trace| P(t)V (t)]dt (2.1.6)

Solution of the Continuous Transient LQR

The following algorithm, from reference [1], is used to solve the transient regulator problem. Let us
define a matrix Z where:

Z:{ TA ~BR'B } (2.1.7)
-c'Qc - A

Matrix Z has the property that if o is an eigenvalue of Z, -a is also an eigenvalue of Z. We can find the
eigenvector matrix W such that

[A 0} .
Z=W W (2.1.8)
0 -A

Where: A is a diagonal matrix consisting of the positive eigenvalues of Z, and - A consisting of the
negative eigenvalues of Z. Then we partition the (2n x 2n) matrix W into four (n x n) blocks as shown
in equation 2.1.9

W, W,
wo | (2.1.9)
W21 W22

The solution P(t) of the Riccati equation 2.1.5 is obtained from equation 2.1.10, where
-1
P(t) = [Wh, + W, G(t, —t)][W, + W, G(t, —t)]  where:
G(t) = exp(At)Sexp(— At), and (2.1.10-12)
-1
S = _(sz - B le) (W21 - P Wn)

From equation (2.1.11) as (tf) approaches infinity, G(t+t) approaches zero, and the steady-state
solution of the Riccati equation becomes: P =W,, W,,"



2.2 The Discrete Time Transient LQR

In the Discrete Transient LQR design case the plant system is represented by the difference matrix
equations 2.2.1

X(k +1) = Ax(k) + Bu(k) +w(k)
y(k)=C x(k) (2.2.1)

Where:

x(k) is the state of dimension n

u(k) is the control of dimension m

y(k) s the output of dimension r

w(k) is zero mean white noise with variance V(t)

We must calculate a state-feedback optimal control u°(k) that minimizes the quadratic performance
index J in equation 2.2.3.

u’ (k) = =K, (k) x(k)

J=Ilim(N - oo)Nzl[X(k +1)TQX(k +1)+u(k)" Rg(k)]+g(N)T P, x(N) (2.2.2,3)

The matrices Q and R and Py are defined as in the continuous case. The discrete optimal regulator
solution is obtained from the difference equation 2.2.4 solved backwards in time, initialized at N with
P(N)=Pn. The (n x n) matrix P(k) is obtained from the solution of the discrete transient Riccati
Equation 2.2.5, where: k=0, 1, 2,...,, N-1

K.(k)=(R+B"P(k+1)B) BTP(k+1) A 2245
24,5
P(k)=[A—BK (k)] "P(k +D[A-BK_(K)]+K] (K)RK,(k)+CTQC=0

Furthermore if the problem is initialized with an initial state error x(0)= xo, then the performance
index criterion is
j=N-1

J = x(0)T P(0) x(0) + Ztrace[v(j)P(j +1) ] (2.2.6)



3. The Asymptotic Kalman-Bucy State-Estimator, Observer

In the previous two sections we demonstrated how to design optimal state-feedback controllers,
assuming that the state vector can be measured accurately and be available for feedback. This
assumption is most often unrealistic because in most systems the state vector is not directly
measurable but the output measurements consist of a linear combination of the states. We therefore
need to design an observer, which is a system that will approximately reconstruct the state vector
from the plant output, and this will allow us to apply our optimal state-feedback control laws. In this
section we will present the design of the steady-state Kalman-Bucy filter that is used to reconstruct
an approximation of the state vector from the measured system output that will converge to the
state vector. We shall also assume that the system is corrupted by two types of noises: measurement,
and state excitation noise. They are both white, zero mean and are not correlated. We will first
analyze the continuous and then the discrete Kalman-Filter observer for continuous and discrete
systems.

3.1 The Continuous Kalman-Bucy Filter

Let us consider the following plant in state-space form. This system is affected by disturbances w(t)
and the observations y(t) are corrupted by noise v(t)

X(t) = Ax(t)+Bu(t)+ G w(t)
Y(1) =Cx(t) +v(t)

Where:

(3.1.1)

x(t) is the state vector of dimension n.

u(t) is the control input vector of dimension m.

w(t) is the process noise of dimension | (I<n) and covariance matrix Qpn, where Qpn=Q'pn20.
y(t) is the measurement vector of dimension r (r<n).

v(t) is the measurement noise with intensity Rmn=R'mn20.

The purpose of the optimal Kalman Filter estimator is to construct an estimate of the state x
operating over the time range [to->t] such that the index J in equation 3.1.2 is minimized, where: X(t)
denotes the estimate of x(t). E is the expected value, and the matrix W is (n x n) positive semi-
definite.

J = 1im(t, — =) E[(x() - 2(0) W (x(t) - 2()] (3.1.2)

The solution exists when the pair (AT,CT) is stabilizable and the pair (A,D) is detectable
Where: D D'= G Qpn G"



After initializing with the expected value of the initial state: X(0) :E[X(O)], the state estimate is

computed by the following differential equation 3.1.4. This equation can also be written as in 3.1.5 to
show that the inputs to the estimator are the plant control vector u(t) and the measurements y(t), as
shown in figure (3.1)

X(t) = AR() + Bu(t) + K [y(t) - CR(t)]

R (3.1.4, 5)
X(t) =[ A= K, C]R(t)+ Bu(t) + K, y(t)

The steady-state Kalman-Filter gain K is obtained from equation 3.1.6, where matrix P is symmetric
positive semi-definite and is obtained from the steady-state solution of the Asymptotic Riccati
Equation 3.1.7

K, =PC'R_~ where:

P=AP+PAT+GQ, G —~PC'R::CP=0 (3.16,7)
The mean square reconstruction error is shown in equation 3.1.8
J =lim(t = «) E[(g(t) — R(t)) W (x(t) - X(t))] —trace[ PW] (3.1.8)
Input u(t) Plant G(s) Output y(t)
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B
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Figure 3.1 Functional Block Diagram of the Kalman-Filter Steady-State Observer

The optimal observer described provides a compromise between the speed of state reconstruction
and the immunity to measurement noise. The balance between these two properties is determined
by the magnitudes of the white noise intensity matrices Qpn and Rmn that can be adjusted to satisfy
design requirements. Decreasing Rmn and increasing Qpn improves the speed of state reconstruction
and shifts the observer poles further to the left side of the complex plane but the observer becomes
more vulnerable to observation noise.



3.2 The Discrete-Time Kalman-Bucy Filter

The steady-state Kalman-Filter estimator for the discrete plant is obtained in a similar fashion. The
dynamic model for the discrete plant is defined by the difference equations 3.2.1, where the vectors
X, W, v, and y are defined as in the continuous equation 3.1.1.

X(k+1) =Ax(k)+Bu(k)+Gw(k)
y(k)=C x(k) +v(k) (3.2.1)

The discrete optimal Kalman Filter estimator problem is to construct an estimate of the state X(k)
from previous measurements of the output vector [y(0), y(1)...y(k-1)] such that the quantity J in
equation 3.2.2 is minimized, where E denotes the expected value, and W is (n x n) positive semi-
definite matrix.

J =lim(k, — ) E[(g(k) — 2(K))"W (x(k) X(k))] (3.2.2)

The solution exists when the pair (AT, CT) is stabilizable and the pair (A, D) is detectable
Where: DD'=G Qpn G'

After initializing with the expected value of the initial state: X(0) =E[§(O)], the state estimate is

computed by the following difference equation 3.2.4. This equation can also be written as in 3.2.5 to
show that the inputs to the estimator are the plant control vector u(k) and the measurements y(k).

R(k +1) = AR(K) +Bu(k) + K, [y(k) - CR(K)]

(3.2.4,5)
R(k+1) =[ A= K, C|&(K) +Bu(k) + K, y(k)

The Kalman-Filter gain Kt is calculated from equation (3.2.6), where matrix P represents the steady-
state variance of the state-vector reconstruction error. It is symmetric positive semi-definite and is
obtained by solving asymptotically the recursive Riccati Equation 3.2.7.

K, =APCT(R,,+CPCT" )" where

P =(A-K,C) R (A-K,C)+GQ,G" +K,RK] 3:2:67)

The initial state of the estimator must be set equal to the plant state: X(0) = x,. The following result
is also true

J =lim(k, — o) E[(g(k) — R(K)) W (x(k) - X(k))]ztrace[PW]



4. Linear Quadratic Gaussian Output Feedback Control

The Linear Quadratic state-feedback controller and the Kalman-Filter results obtained from Sections 1
and 3 are now combined together to create an output feedback dynamic controller. Let us again
consider the state-space plant model that we want to control.

X(t) = Ax(t)+Bu(t)

(4.1.1)
y(t) =Cx(t)

Where:

x(t) is the plant state of dimension n

u(t) isthe plant control input of dimension m
y(t) s the plant output of dimension r

The optimal steady-state, state-feedback control u°(t) = —K_ x(t) was derived in Section 1, and the
Kalman-Filter observer was described in Section 3.

X(t) = AR() + Bu(t) + K [y(t) - CR(t)]

R (4.1.3,4)
X(t) =[ A= K C](t)+Bu(®) + K, y(t)

Since the state vector x(t) is not directly available for measurement, we will use the estimated state
vector and apply the control feedback trough the estimated state rather than the actual state

u’(t) = -K X(t) (4.1.5)

The block diagram in Figure 4.1a shows the state-estimator and the state-feedback controller
operating in closed loop form around the plant. Figure 4.1.b is the same system but the observer and
the state-feedback gain are combined together as a single dynamic control system that provides
feedback from the plant output instead of the states. The closed loop dynamic model is obtained by
combining the plant and Kalman-Filter equations in a (2n x 2n) system 4.1.6.

HR P v

Al = + u

%) |K,C A-K,C-BK.|\2) (o)~ (4.1.6)
After considering the state reconstruction error e (t) =x(t) — X(t) we obtain equation 4.1.7
(Xj A-BK. —-BK; (xj

The eigenvalues of the system in equation 4.1.7 consist of the eigenvalues of det(sl-A+BKc) plus the
eigenvalues of det(sl-A+K:C). Consequently the closed loop system comprises the eigenvalues of the
optimal controller under state feedback, plus the eigenvalues of the observer. This is an important
principle called the “separation principle", because, if we design a stable state-feedback controller
and an asymptotically stable observer independently, the resulting interconnection system,
equations (4.1.6) or (4.1.7), is an asymptotically stable system.
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Figure 4.1a Structure of the Output Feedback Dynamic Controller Consisting of the Kalman-Filter Estimator
and the State-Feedback Gain Kc
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Figure 4.1b Closed-Loop System with Dynamic Controller in State-Space Form Providing Feedback from the
Plant Output



5. Linear Quadratic Control Program

The Flixan Linear Quadratic Control program implements the four LQG functions described in Sections
1 through 4. The user must provide the plant model G(s) and the weight matrices described which
must be included in a systems file (.Qdr). The matrices can also be entered interactively. The program
calculates the control matrix Kc, the estimator gain Kf or the LQG dynamic control system K(s) and
saves them in the same systems file. It runs either interactively or in batch mode. When in batch
mode it processes input datasets from an already created input file (.Inp). The dataset of an operation
is automatically created and saved in the input file after running it interactively the first time. It can
be reprocessed multiple times in batch mode which is much faster than interactively. Typically the
user runs initially the Flixan programs interactively to create the datasets and then when he needs to
make a modification in the data he may reprocess the datasets in batch mode, either each set
individually or the entire file using a batch set. The program consists of the following options:

1. The Asymptotic LQR design for a continuous or discrete time plant described in Section 1. The
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems
file, the output weighting matrix Qc, and the control weighting matrix Rc. It solves either the
continuous or the discrete LQR problem depending on the plant sampling period, which is
zero when the plant is continuous. It calculates the steady-state LQR state-feedback gain Kc
and saves it in the systems file (.Qdr). The user may choose between two algorithms for
solving the asymptotic Riccati equation.

2. The Transient LQR design for a continuous or discrete time plant described in Section 2. The
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems
file, the (r x r) output weighting matrix Qc, the (m x m) control weighting matrix R, and the
(nxn) weighting matrix P1 that penalizes the state vector at the terminal time t:. It requires
also the initial time-to-go before the final time, and the number of points to calculate the
state-feedback gains (only when the plant is continuous). It calculates the time-varying gain
matrix Kc(t) and saves it as a function of time-to-go in Excel format in file “Gains.Txt”. Tgo is in
the first column and the gain matrix is printed in rows.

3. The Kalman-Filter State Estimator for a continuous or discrete time plant described in Section
3. The program reads the continuous G(s) or discrete G(z) plant state-space model from the
systems file, the (nxl) input noise matrix G, the (rxr) process noise intensity matrix Qpn, and the
(mxm) measurement noise covariance matrix Rmn. It solves either the continuous or the
discrete KF observer problem, calculates the (nxr) Kalman-Filter gain Kr and saves it in the
systems file (.Qdr).

4. The Dynamic Output Feedback Controller that is described in Section 4. The program
combines the results obtained in steps 1 and 3, which are: the state-feedback gain Kc and the
Kalman-Filter gain K, to synthesize a steady-state control system in the situation when the
state-vector is not available for measurement. It reads the two matrices from the systems file
(.Qdr), calculates the output-feedback controller K(s) in state-space form and saves it in the
same system:s file.




The in-between program calculations, such as matrix P, errors in the Riccati solution, closed-loop
system eigenvalues, etc. are saved in file “LQC.Out” after execution. The analyst may check this file to
make sure that no errors have occurred, eigenvalues are stable, matrix P is symmetric, etc. It is also
important to check the plant’s controllability and observability because the success of the solutions
depends on that. It is the first option in the menu of the Linear Quadratic Control design program and
it is only available in the interactive version when you begin analyzing the system, since it is not
necessary to rerun it interactively when you reprocess the dataset in batch mode.

5.1 Running the Program Interactively

The Linear Quadratic Control design program is selected from the Flixan main menu by going to
“Program Functions”, “Robust Control Synthesis Tools”, and then “Linear Quadratic Control Design”,
as shown below. Select the input filename to save the operation dataset and the systems filename
where it will read and write the systems and matrices, and click on “Process Files”.

" Flixan, Flight Vehicle Modeling & Control System Analysis
Utilities  File Management = Program Functions | View Cuad  Help Files
Flight Vehicle/Spacecraft Modeling Tools -]
Frequency Control Analysis >
Robust Control Synthesis Tools 3 Modeling Vehicle Pararmeter Uncertainties
Creating and Modifying Linear Systems H-Infinity Control Design
Linear Quadratic Control Design
LOG /LTR
Select Input and Systemns Filenames
Select an Input File (.Inp) to Select a Systems File (.Qdr)
Save the LOR Input Data Containing the Design Systemn
End_GameZx2.inp End_GamEZxE.qdrI
End_Game2x2.inp End_Game2x2 qdr
End_Game_s.inp End_Game_s.qdr
End_Game_z.inp End_Game_z.qdr
EMGM.INPF ENGM.QDR
EMGZIMNP ENGZ. QDR
Shuttle_Entry_RB.Inp Interceptor.Qdr
MNewFile.Inp Shuttle_Entry_RB.Qdr
MewFile.Qdr
Create New Input Set Cancel, Exit Process Files

The main LQR control design menu includes several options. Select one of the options, such as:
Steady-State LQR design in this case, and click on “Select”.



“ LOR Control Design, Main Menu >

Double-Click to Select one of the Following LQR Design
Options:

Check a System's Controllability and Observability

Steady-5tate Linear Quadratic Regulator State-Feedback
Time-Varying LQR with Terminal Time Constraint on State
Steady-5tate Kalman Filter State Estimator

Output Feedback LQG Control Design

LQG with Frequency Shaped Cost Functions

LQG with Loop Transfer Recovery (LQG/LTR)

Exit Menu Select

In this example the input file already contains 2 LQR design datasets. You can either process one of
the 2 existing datasets or you can create a new dataset by clicking on “Make a New Set Interactively”.
Choose the second option and from the next menu select the title of the plant model that will be
stabilized by LQR, “Simple End-Game Model” in this example.

Select a Set of Data from Input File

Select a Set of Input Data for "LINEAR QUADRATIC REGULATOR" from an Input File: Run Selected
End_Gamezxz.inp Input Set
LOR Control Dﬂgn 1 for Smple End-Game Model Make New Set
LOR Contral Design 2 for Simple End-Game Model oot
Cancel, Exit

Select a State-Space System from Cuad File

Select a State-Space Model for the Design Plant, From Systems File: End_GameZx?Z.qdr

Simple End-Game Model

Choose a System Title and then click "Select” Cancel | | View System




The new LQR design dataset like all datasets requires a title. Enter its title in the following dialog and
click “OK”. It can be used to reprocess this operation in the future when you run the program in batch

mode.

Enter a Title

Do you Want to Create an Input Dataset of this Process in File End_Gamezxz.inp
It will be used for Future Reprocessing of the Data. If Yes, Enter a Title for the LQR Control
Design below. Otherwise, Cancel

oK

LOR Control Design 5 for Simple End-Game Model

Cancel

The next step is to select the output criteria to be optimized. You can either use the output matrix C,
the identity matrix, or define a new set of output criteria by picking a different matrix C1, as shown.

*u Select One of Three Cptions ot

There are three Options for Selecting a Criteria Qutput Matrix in the
Quadratic Performance Index. You may use the Plant Matrix C, Select a
different Outout Matrix C1. or use the Identitv Matrix.

Use the Plant Output Matrix C for the
Optimization Criteria O x

Select or Define a Mew Matrix C1 Representing
Cutput Criteria to be Optimized ® v

Uze the Identity Matrix to Directly Penalize the O x

State Vector, Selectively OK

The following menu is used to select the output criteria matrix C; from the systems file. If the matrix
is not in file you may create it interactively by adding a new matrix. The program checks the system’s

observability from matrix C1, which is okay in this case.

Select a Gain Matrix

Select the Criteria Output Matrix C1 from Systems File: End_Game2x2.qdr

Selecta
Matrix

o The Pair [&,C1) is Detectable from the Output Criteria

Matrix Name Size Matrix Title

B 2 ¥ 2: Control Weight Matrix BRc ~
3 ¥ 4: Performance Criteria Cl

Qc3 3 X 3: Output Criteria Matrix Qc3

Fl 4 ¥ 4: Terminal State Weight Matrix Pl (4x4)

=1 4 ¥ 1: Process Matrixz G1

Ec 2 ¥ 4: LOR State-Feedback Control 3 for Simple End-Game Hodel

Ec 2 ¥ 4: LOR State-Feedback Control 1 for Simple End-Game Hodel

Ec 2 ¥ 4: LOBE State-Feedback Control 2 for Simple End-Game Model b

Observability Test >

View Matrix

Add a New
Matrix

Cancel




You must also select the two weight matrices Qc and Rc from the systems file. The (3x3) matrix Qc
penalizes the 3 criteria outputs which are specified by the output matrix Ci, and the (2x2) matrix Rc
penalizes the control inputs which are 2 in this example.

Select a Gain Matrix

Selecta 3x 3 State Weight Matrix Qc from Systems File: End_Game2x2.qdr Select a
Matrix Mame Size Matrix Title T
Qcd 4 X 4: State Weight Matrixz Qc (4xd) Y . B
Qc2 2 ¥ 2: Output Weight Matrix Qc [222) View Matrix
Rc 2 X 2: Control Weight Matrix Rc

Cl 3 X 4: Performance Criteria Cl Add a New
= 3 X 3: Cutput Criteria Matrix Qc3 Matrix
Pl 4 ¥ 4: Terminal State Weight Matrixz Pl (4=x=4)

=1 4 ¥ 1: Process Matrix &1 Cancel
Ec 2 X 4: LQE State-Feedback Control 3 for Simple End-Game Model b

Select a Gain Matrix

Selecta 2x 2 Control Weight Matrix Rc from Systems File: End_Game2x2.qdr Select a
Matrix Mame Size Matrix Title S E L
Qcd 4 X 4: State Weight Matrixz Qc (4xd) Y . B
Qc2 2 ¥ Z: Output Weight Matrixz Qc (2x2) Wiew Matrix

2 ¥ 2: Control Weight Matrix Rec

Cl 3 X 4: Performance Criteria Cl Add a New
Qc3 3 ¥ 3: Output Criteria Matrix Qc3 Matrix
Pl 4 ¥ 4: Terminal State Weight Matrixz Pl (4=x=4)

=1 4 X 1: Process Matrixz Gl Cancel
Ec 2 X 4: LQB State-Feedback Control 3 for Simple End-Game Model hd

We must finally select the algorithm to solve the asymptotic Riccati equation. The program provides 2
options. Laub’s algorithm is chosen in this case. We must also enter a title for the state-feedback gain
Kc that will be saved in the systems file. All systems and matrices need a title in a (.Qdr) file.

“w Select One of Two Options et

Select a Method to Solve the Algebraic Riccati Equation
You may either choose Laubs Method or the Assymptotic Method

Use Laubs ARE Algorithm ... ® v

Use the Assymptotic Method ... O x OK

Enter a Title for the Control Gain that will be Saved in File: End_Gamezxz2.qdr -

LOR State-Feedback Contral 5 for Simple End-Game Maodel




The following LQR design dataset was created in the input file (.Inp) that can repeat this operation in
the future. The dataset includes a label on the top: “LINEAR QUADRATIC REGULATOR ..” that
specifies which Flixan program will process the dataset, and a title “LQR Control Design 5 for Simple
... The green comments were added later. It can be used to reprocess the data in batch mode.

LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN |

LOR Contrel Design 5 for Simple End-Game Model

! LOR Contrel Design for a Simple End-Game Model using

! the Criteria Optimization Cutputs from Matrix Cl, the
! (3x3) Cutput Weight Matrix Qc3, and the (2x2) Control
L]
1

weight matrix Re. Laub's method is used to solve the ARE

Plant Model Used to Design the Contreol System from: Simple End-Game Model

Criteria Optimization Cutput is Matrix C1 Performance Criteria C1

State Penalty Weight (Qc) is Matrix: Qo3 Output Criteria Matrix Qc3

Control Penalty Weight (Re) is Matrix: Reo Control Weight Matrix Reo

Continuous LQR Solution Using Laub Method

LOQR State-Feedback Control Gain Matrix Ko LOR State-Feedback Control 5 for Simple End-Game

The (2x4) state-feedback gain matrix Kc was saved in the systems file (.Qdr) under the specified title.
The comments are transferred from the input dataset to the matrix in the systems file. The
definitions of the matrix inputs and outputs are determined from the plant model variables.

Gain Matrix for

LQR State-Feedback Contreol 5 for Simple End-Game Model

! LR Control Design for a Simple End-Game Model using the Criteria Optimization

! Outputs from Matrix Cl, the (3x3) Output Weight Matrix Qec3, and the (2x2) Control
! weight matrix Re. Laub's method is used to solve the ARE

1

Matrix Ec Size = 2 ¥ 4
1-Column 2—Column 3-Column 4—Column
1-Row —-0.999999945015E+01 -0.1418723048039E+02 -0.684422068284E+00 0.906398261604E+01
2-Row 0.2344889988S3E-05 0.3244151158201E-05 0.166220158816E-06 —0.3422110341195E-08
Definiticons of Matrix Inputs (Columns): 4
Relative Position
Relative Velocity
Target Acceleration
Interceptor Acceleration

Definitions of Matrix Outputs (Rows): 2
Interceptor Acceleration Command
Target Acceleration Noise



5.1 Running the Program in Batch Mode

To run a previously created dataset, such as an LQR design, for example, you must first select the
project directory, and from the Flixan main menu, go to “File Management”, “Managing Input Files”,
and then “Edit/ Process Input Data Files”, as shown below.

% Flixan, Flight Vehicle Modeling & Control Systern Analysis

Utilities = File Management Program Functions  View Quad  Help Files

Managing Input Files (Inp) * Edit / Process Batch Data Sets
Managing System Files (.Cdr) H Edit / Process Input Data Files

The input file management utility dialog comes up and from the left menu select the input file that
contains the datasets for this project by clicking on “Select Input File”. The menu on the right fills with
the titles of the datasets which are included in the input file. Select one of the titles, an LQR Control
Design in this example, and click on “Process Input Data”. The program will calculate the LQR gain
matrix Kc and save it in the systems file, as before. You may then select another dataset, such as a
Transient LQR or State Estimator, and process them also. If you include a batch set, such as the one
shown here at the top, you may select it to instantly process the entire input file.

Managing Input Data Files

To Manage an Input Data File, Point to the
Filename and Click an "Select Input File" The following Input Data Sets are in File: End_Game_s.inp
End_Game_s.inp

Exit

- Bun Batch Mode : Batch for preparing End-Game Control design Models
Select Input File Lk £ £t

LOR Control Des : LOR Control Design 1 for Simple End-GFame Model

LOR Control Des : LQR Control Design 2 for Simple End-Game Model
ne_=ames.np Edit Input File LOR Control Des : LOR Control Design 3 for Simple End-Game Model

End_Game2x2.inp

End_Game_z.inp Transient LQR : Transient LOR Design 1 for Simple End-Game Model

Ezg;’llm}'} Transient LQR : Transient LOR Design 2 for Simple End-Game Model

Shuttle Entry RB.I Process Input Data State Estimator : Kalman-Filter Design 1 for Simple End-Game Model
uUttie_tntry_RB.Inp State Estimator : EKalman-Filter Design 2 for Simple End-Fame Model
Delete Data Sets in File LQE Control Des : LQE Control Design 1 for Simple End-Game Model
LQG Control Des : LOG Control Design 2 for Simple End-Game Model
Relocate Data Set in File
Copy Set to Another File

View Data-Set Comments

Comments, Data-Set User Notes

LQR State-Feedback Control Design, Continuous Using the Assymptotic Method, C=Identity



