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Background 
 
The H∞ algorithm is a powerful control synthesis method that attempts to minimize the infinity norm of the 
sensitivity transfer function matrix of the closed-loop system. The sensitivity function of a system is the 
transfer function between the disturbance inputs and some sensitive outputs that should be kept small, 
such as a spacecraft attitude or an airplane’s angle of attack. The infinity norm (H∞) is a measure of 
amplitude and it is the magnitude of the largest singular value over all frequencies. The H∞ algorithm 
calculates a control system than minimizes the H∞ of the system’s sensitivity. The mathematical 
implementation of the H∞ control synthesis algorithm requires two steps. The designer must first create a 
Synthesis Model (SM) that consists of 9 matrices including plant dynamics and performance requirements 
of the closed-loop system. The SM is then presented as input to the H∞ algorithm that calculates the 
optimal control solution that will satisfy the design requirements. The algorithm requires the solution of 
two Riccati equations. In addition to the control requirements, some design intuition is needed in order to 
set up the synthesis model which is gained through experience.  
 
In the design of a control system the engineer is faced with several requirements that must be satisfied 
with compromising solutions. The main goal is to design a control system that will provide good stability for 
the nominal plant. The control system must also behave properly by providing good performance with 
respect to commands and to external disturbances. That is, good response to commands and sufficient 
attenuation to disturbance signals. The control system must also be robust to unmodelled dynamics the 
uncertainty of which increases with frequency. It must, therefore, provide good attenuation at high 
frequencies in order to prevent uncertain plant dynamics (such as unmodelled flexible modes) from 
becoming unstable. In addition, the control system must be robust to small variations in plant parameters. 
In an aircraft, for example, the dynamic model is a function of several uncertain parameters such as the 
aerodynamic coefficients, the center of gravity, the center of pressure, dynamic pressure, altitude etc. In a 
spacecraft the uncertainties may be in the structural modes, the center of mass, the moments of inertia, 
etc. The SM includes all the closed-loop requirements of the system, such as: parameter uncertainties, 
unmodelled dynamics, environmental disturbance magnitudes, control limits, performance criteria 
magnitudes etc. The resulting H∞ controller must satisfy or compromise those design requirements. 
 
The H∞ program included in Flixan not only solves the H∞ optimization algorithm but it also includes a 
utility that helps the designer to create the SM interactively from the plant dynamics. The plant dynamics is 
a system that is usually created from the vehicle modeling program. The user separates the inputs into 
controls and disturbances, and the outputs into measurements and performance criteria. After separating 
them you end up with a SM consisting of 9 matrices that go into the H∞ algorithm. The SM also includes 
some gains that define requirements on the disturbances and the performance criteria. They trade 
between control bandwidth, robustness to noise and un-modeled dynamics, and sensitivity. This 
documentation of the H∞ control design program begins with a basic introduction of the H∞ problem 
formulation. In chapter 2 we present the standard H∞ SM and its mathematical solution. In chapter 3 we 
describe a more general SM formulation that includes direct transfers from inputs to outputs. In chapter 4 
we demonstrate how to include parameter uncertainties in the plant using the Internal Feedback Loop (IFL) 
structure. In chapter 8 we describe the use of the H∞ program. The references are in chapter 9, and in 
chapter 10 we demonstrate some control design examples. 
 
 
1.0 Introduction to H∞ Control System Design. 
 
One of the great achievements in control theory during the late 1980's was the development of a 
systematic control design method that minimizes the infinity norm of the sensitivity function, i.e. the 
transfer function between the input disturbance inputs and the performance criteria outputs to be 
optimized. The advantage of this procedure is in characterizing the solution of the H∞ problem in state-
space form and solving it by means of two Riccati equations, a solution which is similar to the well-known 
LQG problem. Some of the contributors of this new theory are: J. Doyle, K. Glover, M. Safonov, P. 
Khargonekar, B.A. Francis, et. al. Consider the system in Figure 1.1 where G(s) is the plant model and K(s) is 
the controller, and let us assume that the plant has the State-Space representation of equation 1.1. 
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Figure 1.1 H-infinity controller minimizes system response between the disturbances (w) and the criteria (z) 
 

     (1.1) 

Where:  
 
x is the plant state-vector of G(s) of dimension (n) 
u is the control inputs vector, consisting of (l) actuators 
y is the measurements vector (sensors) of dimension (m), measuring a linear combination of the 

plant's states plus noise. 
w is the external disturbances vector of dimension (lw) greater than or equal to the number of 

measurements (lw≥m). The vector w consists of both input and output disturbances. 
z is the performance criterion vector of dimension (mz). It is a set of variables consisting of a 

combination of states and control inputs that must be optimized by the algorithm, not necessarily 
actual outputs. It must be greater than or equal to the number of the control inputs, (mz≥l). 

 
The H∞ control problem can be described by the following statement. Find an admissible controller K(s) 
such that the infinity norm (i.e. the maximum singular value over the entire frequency range) of the 
transfer function from w to z in Figure 1.1, is less than a constant value (γ),  
 
i.e.  ║Tzw║∞ < γ        (1.2) 
 
The first step in the H∞ design process is to create a mathematical Synthesis Model that includes the basic 
plant dynamics, definition of disturbances and criteria to be optimized, and description of some uncertain 
internal plant parameters in order to improve the system’s robustness to uncertainties. The H∞ algorithm 
then reads the SM and calculates the control system K(s) that closes the loop between measurements and 
the controls. The success of the control design depends in the proper trade-off between performance of 
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some outputs in response to commands, robustness against uncertainties and sensitivity of some variables 
to disturbance inputs. This can be adjusted by tweaking some scaling gains in the SM. The gains are always 
positive. There are input disturbance scaling gains which are initially set equal to the maximum magnitude 
of the corresponding disturbance input. There are also output criteria scaling gains, where initially each 
gain is set equal to the inverse of the maximum allowable magnitude of the corresponding output. This 
scaling normalizes the transfer function requirements between disturbances and criteria to be less than 
unity. The gains are adjusted after a few control design iterations to produce an acceptable trade-off 
between control bandwidth, robustness to uncertainties, system sensitivity to external disturbances and 
acceptable response to input commands. A simple simulation is used to examine the control system 
performance between gain adjustments.  
 
The mathematical solution of the H∞ optimization problem is similar to the LQG and it involves the solution 
of two Riccati equations: a state estimator and a state feedback problem. The two Riccati equations 
calculate the state feedback matrix F∞ and the output injection matrix H∞. The H∞ algorithm solves either 
the state-feedback with estimator using both Riccati equations or only the state-feedback problem if the 
entire state vector is measurable. The control law is saved either as a state-space system or as a state-
feedback matrix.  
 
In section 2 we will describe the standard H∞ state-feedback synthesis model and will present an algorithm 
that asymptotically minimizes the infinity norm of the sensitivity transfer function. The optimization 
algorithm requires some conditions to be satisfied by the SM which are described in Section 2.1. These 
conditions are not always satisfied by a general SM and a series of transformations of the original SM are 
applied in order to convert it to the standard model and satisfy the conditions. The transformations were 
derived by Safonov et al, in Ref.[2] and they are described in Section 2.2.2. The controller derived from the 
transformed SM must be back-transformed in order to match the original plant.  
 
2.0 H∞ Control via Full-State Feedback. 
 
By full-state feedback we mean that the entire state vector is measurable and used for control. In this 
section we will describe the general formulation of the full state feedback synthesis model and present two 
solutions. The first solution is simple and it assumes that the matrix D11=0. The second approach does not 
have the D11=0 limitation, but it has a more complex solution consisting of three parts, (a) the solution of a 
simplified standard formulation, (b) the transformation of any general type of synthesis problem into the 
standard form, (c) the back-transformation of the controller obtained from the transformed system to 
match the original system. 
 
The H∞ control problem via full state feedback is formulated by the state-space synthesis model in equation 
2.1. The vector w is the disturbance input of dimension (m1), vector u is the control input of dimension 
(m2), and vector z is the criterion output of dimension (p1). The control design problem is to find a constant 
state-feedback matrix F∞ that stabilizes the system, and minimizes the closed loop sensitivity transfer 
function between the disturbance w and the criterion vector z, i.e.  ∥Tzw∥∞ <γ.  
 

     (2.1) 

In Section 5 we present a method that transforms a robust control design problem including internal 
“structured” parameter variations into the formulation of Equation 2.1. This allows us to use full state-
feedback H∞ control design and derive controllers that reduce the system's sensitivity to internal 
parameter uncertainties, such as aero coefficients, etc.  
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2.1 Full State-Feedback Solution Assuming D11 is Zero 
 
A simplified formulation for solving the full state feedback problem is to assume that the matrix D11=0, and 
the following additional conditions must be satisfied:  
 
 (i) The pair (A, B1) is stabilizable 
 (ii) The pair (C1, A) is detectable 
 (iii) The pair (A, B2) is stabilizable 
 (iv) DT12C1 = 0 
 (v) DT12D12 = I       (2.1.1) 
 
The matrix C1 plays the role of penalizing the criteria outputs z. The matrix D12 penalizes the control inputs 
u, and it must be of full rank. If DT12D12 ≠I, but D12 is full rank we can scale the input by factoring D12 using 
singular value decomposition 

TVUD 1
1

112

0








Σ

=         (2.1.2) 

 
By inserting V1 Σ-1 in series with the control signal (u), the new D12 matrix becomes 
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Define a matrix R as follows 
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1
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The scaled H∞ solution for the full state feedback is 
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The state-feedback controller matrix F∞ that satisfies ∥Tzw∥∞ <γ is: 

∞
−

∞ −= XBRF T
2

1
       (2.1.6) 
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2.2 Full-State Feedback Solution for Non-Zero D11 
 
A more general solution of the full state feedback problem is presented here, assuming that matrix D11 is 
non zero. The solution is more complex and it consists of three parts:  
 
(a) A solution based on the "Standard Synthesis Model", which assumes that the matrices D11 and D12 

have certain structure 
(b)  The general design problem is transformed into the standard SM form, in order to apply the 

solution of the standard model and to obtain an H∞ controller for the transformed SM, and  
(c)  The H∞ controller is back-transformed using a reverse transformation to match the original model. 
 
 
2.2.1 Full-State Feedback H∞ Solution for the Standard Problem 
 
Consider the SM formulation of Equation 2.1, and assume the following: 
 
(i) The pair (A, B2) is stabilizable. 
(ii) D12 = [0, I]T,   and   D11=0 
 
Define the following Hamiltonian matrix, solve a Riccati equation for X∞, and obtain the state-feedback 
matrix F∞ for the standard model. 

   (2.1.7) 

There exists an internally stabilizing controller such that ║Tzw║∞<γ if and only if the following two 
conditions are satisfied: 
 
(a) The Hamiltonian must have no pure imaginary eigenvalues, which means that X∞ exists. 
(b) The solution of the Riccati Equation, matrix X∞ must be positive semidefinite, X∞ ≥0. 
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2.2.2 Synthesis Model Transformations 
 
However, it is not always possible to satisfy the assumptions of the standard model: D12=[0, I]T and D11=0. 
We shall therefore present a procedure that is based on scaling and unimodular transformations by 
Safonov, to design a full state feedback gain matrix for the generic SM described in equation 2.1, and not 
limited by the above two assumptions. The generic SM is transformed to the standard form. The standard 
SM is used to design a preliminary H∞ controller, and the controller is back-transformed to match the 
original plant. 
 
Step-1, Scale Matrix D12 
 
First perform the singular value decomposition of the (p1 x m2) matrix D12 as shown in equation (2.2.1), 
where U1 has (m2) columns, and U2 has (p1-m2) columns. 

[ ] TVUUD 






Σ
=

02112         (2.2.1) 

 
Then define new scaled input u(1) and output z(1) defined as follows: 
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==
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)1(1)1()1(

,      (2.2.2) 

 
Substituting Equations 2.2.2 to Equations 2.1 we obtain the following modified state-space equations: 

(2.2.3) 
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Step-2, Scale the (p1 x m1) Matrix D11 
 
Using the following unimodular transformation 

 
 
Assuming that u(2)= u(1) we obtain the following set of state-space equations where the matrix D11 is now 
zero. 

 
 
Step-3, Repeat Step-1 and Rescale Matrix D12(2) 
 
Perform the singular value decomposition of the (p1 x m2) matrix D12(2) as in step-1 

[ ] TVUUD 

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
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=
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12       (2.2.9) 

 
Where: U1 has (m2) columns, and U2 has (p1-m2) columns. Notice, the matrices U1, U2, Σ, and V are different 
from those in step-1. 
 
Then define new scaled input u(3) and scaled output z(3) defined as follows: 

)2()3()2(

1

2)2()3()3(

)3(1)3()3()2(

, wwandz
U
U

zSz

uVuSu

T

T

z

u

=







==

Σ== −

   (2.2.10) 

 
  



10 
 

Substituting Equations 2.2.10 to Equations 2.2.7 we obtain the following synthesis model modifications. 

 (2.2.12) 
Step-4: Determine the State Feedback Matrix F∞ 
 
The transformed system, described in Equations 2.2.12, is now in the standard form that satisfies 
conditions (i) and (ii) in section (2.2.1), and the standard solution of Equations 2.1.7 can be used to 
calculate the state feedback gain matrix F∞(3) for the transformed system. The state feedback gain matrix F∞ 
for the original system of Equations (2.1) can be obtained by back-transforming the controller as follows: 
 

)3()3()1(
∞∞ = FSSF uu since: xFSSuSSu uuuu

)3()3()1()3()3()1(
∞==     (2.2.13) 

 

3.0 H∞ Control Design Using Output Feedback 

In Section 2 we assumed that the plant's state vector x is directly measurable and the resulting controller is 
not dynamic but a state-feedback gain matrix. We will now formulate the output feedback H∞ problem. In 
this case the input to the control system comes from the plant's output measurements (ym) which is a 
linear combination of the states. A state estimator is therefore needed to estimate the state vector from 
the measurements. The controller is a system consisting of a state estimator and a state-feedback gain 
matrix. They are combined together in a dynamic multivariable controller. The design of the H∞ controller/ 
estimator is defined by the Synthesis Model which in general it includes plant dynamics, parameter 
uncertainties, disturbance inputs, criteria outputs, and gains that trad performance against robustness. 
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3.1 H∞ Synthesis Model (SM) 

The original quadruple matrix system of a vehicle alone that consists of inputs, states and outputs is not 
sufficient for H∞ design. The H∞ method requires more variables and parameters in order to refine the 
optimization. The SM is a state-space system consisting of 9 matrices which captures the plant dynamics 
and the control system performance requirements that will be traded by the optimization algorithm. The 
SM in general includes: control inputs (uc), commands to regulated outputs, exogenous disturbance inputs 
(w), measurements (ym), measurement noise, and criteria outputs to be optimized (z). It may also include 
parameter uncertainties which are described with additional input-output pairs (wp, zp). The disturbance 
inputs and the criteria outputs are scaled by gains which affect the control system bandwidth. Equation 3.1 
shows a typical synthesis model representation for output feedback control.  

       (3.1) 

Where: 
 
x  is the (n) state-vector of the design plant 
uc is the control input vector, size (I) 
ym is the measurements vector of size (m) 
w is the disturbances vector at the plant input and output w=[wi, wo] 
z is the criterion vector including criteria on the control inputs z=[zo, zi] 
 
The disturbance input (w) consists of disturbances at the plant input and also at the measurements. It may 
also include commands of regulated outputs, and inputs from structured uncertainties. It includes two 
parts: (a) an exogenous input disturbance vector wi of dimension (lw) that excites the states, and (b) an 
output disturbance wo of dimension (m) that represents sensor noise or used to model uncertainty in the 
measurement. It defines how disturbances enter the plant at the inputs and at the sensors. 

Similarly, the criterion output vector (z) consists of variables that must be optimized by the H∞ algorithm. It 
also consists of two parts: (a) the criterion zo of dimension (mz) that is a linear combination of the states, 
and (b) the criterion (zi) of dimension (I) that penalizes the control inputs (uc). The structured uncertainties 
create additional fictitious inputs in (wi) and in the outputs (zo). One input/ output pair per uncertainty. 
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Some of the matrices in the SM are extracted from the plant dynamics, while others are design parameters 
which are defined by the control designer. The matrices that are part of the plant dynamics are: the state-
transition matrix A, the control input matrix B2, the input disturbance matrix B1, and the measurements 
output matrix C2. The matrices C1, D12, and D21 are not necessarily part of the physical plant. They are 
design parameters used to trade system robustness versus performance. Matrix C1 defines a set of criteria 
variables in the H∞ optimization. Matrix D12 penalizes the control inputs and it is used to adjust the closed 
loop system bandwidth. Matrix D21 defines the effects of measurement noise, uncertain dynamics, or 
sensor noise in the measurements. The size of the matrix D12 is (lxl), and matrix D21 is (mxm). They must 
be square, full rank and diagonal for meaningful results. 

 

3.2 Standard Output Feedback H∞ Synthesis Model  

Equation 3.1 represents the formulation of a generic SM and the H∞ algorithm is expected to minimize the 
infinity norm of the sensitivity transfer function between the disturbance inputs (w) and the output criteria 
(z). However, this formulation is not easily solved directly. We have a solution for the standard H∞ SM and 
in order to solve equations 3.1 we must first transform it to the "Standard Form" for which there is a simple 
H∞ solution, and then back-transform the controller. The "Standard” H∞ solution requires the following 5 
conditions to be satisfied by the SM. 

(i) The pairs (A, B1) and (A, B2) be stabilizable. 
(ii) The pairs (C1, A) and (C2, A) be detectable. 
(iii) The matrix product (D12T D12)= Il 
(iv) The matrix product (D21 D21T)= Im   
(v) The matrices D11=0 and D22=0 
 
Condition (iii) implies that the number of output criteria (z) must be greater than or equal to the number (l) 
of controls uc. Condition (iv) implies that the number of disturbances (w) must be greater than or equal to 
the number (m) of the measurements ym. The conditions (iii) to (v), however, are not easily satisfied 
without a transformation on the SM. This transformation, by Safonov in Ref[4], is performed by a series of 
scaling and loop shifting operations that transform the generic  H∞ SM structure to the standard form of 
equations  3.1. The resulting controller must be back-transformed in order to be used with the original 
plant. In Section 3.3 we present the mathematical solution for the Standard H-infinity Problem. 
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Figure 3.1 Standard Synthesis Model for Output Feedback H-Infinity Control Design 
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3.3 Solution for the Standard H∞ Output Feedback Problem   

This H∞ solution requires a standard Synthesis Model of the form shown in Figure 3.1 and satisfies the 
conditions in Section 3.2 where the matrices D11 and D22 are zero and the matrices (D12TD12) and (D21D21T) 
are the identity matrices. The algorithm executes the following steps: 

Step-1: Define a Hamiltonian matrix for the state-feedback controller, solve a Riccati equation for X∞ and 
obtain the state-feedback matrix F∞, as follows:  

 

The following two conditions must be satisfied: 

1) The Hamiltonian must have no pure imaginary eigenvalues, which means that X∞ exists. 
2) The solution of the Riccati Equation, matrix X∞ must be positive semidefinite, X∞>0. 

Step-2: Define a second Hamiltonian matrix for the estimator, solve a Riccati equation for Y∞, and obtain 
the output injection matrix H∞ 

 

( ) ( )
( ) 12

2112212111 ;;~

−

∞∞
−

∞∞

−=

+−=−=

XYIZ

DBCYHDDIBB TTT

γ  

The following two conditions must be satisfied: 

1) The Hamiltonian must have no pure imaginary eigenvalues, which means that Y∞ exists. 
2) The solution of the Riccati Equation matrix Y∞ must be positive semidefinite, Y∞>0. 
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Step-3: Calculate the spectral radius ρ, which is the magnitude of the largest eigenvalue of the product 
(X∞Y∞). We must now find the smallest value of a parameter γ that satisfies the condition: γ<

∞zwT  ; 

where Tzw is the transfer function between the disturbances (w) to the criteria (z). We iterate the 
parameter γ beginning with large values and try to satisfy the three conditions below. We gradually reduce 
γ until one of the three conditions below is violated, in which case we accept the smallest that doesn’t 
violate the 3 conditions. 

a) ρ( X∞Y∞)< γ2        (3.3.3) 
b) The matrices X∞ and Y∞ from the Riccati Equations must be positive semi-definite, i.e. X∞≥0 and 

Y∞≥0. 
c) The Hamiltonian matrices X∞ and Y∞ must have no imaginary eigenvalues. 

If the above conditions are satisfied by a value of γ, then we can assume that the condition γ<
∞zwT will 

also be satisfied. If one of the above conditions is violated, we must increase γ and repeat the procedure. 

Step-4: When γ is large enough to satisfy the above 3 conditions and yet small enough to produce a 
satisfactory sensitivity 

∞zwT  then we can calculate the following matrix Z∞. 

( ) 12 −

∞∞
−

∞ −= XYIZ γ        (3.3.4) 

There is a family of stabilizing controllers that satisfy the sensitivity condition for “nominal performance” 
γ<

∞zwT . The general form of the controller K(s) can be expressed in statespace form, as shown in 

Equation 3.3.5 and Figure 3.3.6. The controller consists of two parts, and it can be written as K(s)= Fi(J,Q). 
Q(s) can be any given stable transfer function that satisfies the condition γ<

∞
Q . J(s) is a two-vector input, 

two vector output transfer function matrix. The presence of Q(s) in the controller is optional. In fact, Q(s)=0 
may be sufficient. Q(s) is defined by the following matrix equation 

)()()( susQsy ml =  

Where: the dimension of vector um is equal to the number of measurements (m), and the dimension of 

vector yl is equal to the number of the control inputs (l). Note that as γ increases to infinity the solution of 
the H∞ control problem becomes identical to the LQG problem. 
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The H∞ controller solution that stabilizes the standard synthesis model of Figure 3.1 and satisfies the 
specified sensitivity requirements is described by the state-space equations 3.3.5. All of the parameters are 
derived from the SM. 

 

Equation 3.3.5 H∞ Controller for the Plant Transformed into Standard Form  
The actuator input command is xFu ˆ2 ∞= , where x̂ is the estimated state vector. The estimator dynamics 
when the lower feedback loop Q(s)=0, is 

( ) ( )222211
2 ˆˆ yyHZuBxXBBAx T −−++= ∞∞∞

−γ  

Where: 2ŷ is the estimate of the output measurement, ( )xXBDCy T ˆˆ 121
2

22 ∞
−+= γ  
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3.4 General Formulation of the Synthesis Model  

The simple solution of the Standard H-infinity SM formulation presented in Section 3.3 requires the 
conditions (iii-v) of Section 3.2 to be satisfied in order to use the controller. In general, the SM may have 
non-zero direct transfer matrices D11, D22, and not satisfy the conditions (iii) and (iv). The solution in this 
case is more complex and the SM requires a series of transformations in order to be transformed and 
comply with the standard form of Figure 3.1. These transformations will be described in Section 3.5. In this 
section we present a more general synthesis model that is typically obtained when setting up an H∞ 
problem. This model includes the plant dynamics, the control inputs, disturbance and command inputs, the 
measurements, and criteria outputs that must be minimized. The noticeable differences between the 
standard and the generic SM is that we now have direct transfer from the exogenous inputs wi to the 
output criterion and measurement vectors (zo and ym) via the matrices D1111 and D21w respectively. The 
exogenous inputs are either disturbances, coupling directly to the plant input via matrix B1, or commands 
that go directly to the regulated outputs in vector zo via D1111, due to the fact that some of the criteria 
vector elements zo consist of commands minus system responses. In addition, there is also a direct transfer 
from the control uc to the output criteria zo and to measurements vector ym via the matrices D12u and D22 
respectively, see Figure 3.4. 

 

Figure 3.4 State-Space Formulation of the General H∞ Synthesis Model  
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3.5 Transformation of the General H∞ SM Using Scaling and Loop-Shifting Operations 

The specific H∞ synthesis procedure described in Section 3.3 assumes that the conditions (iii to v) stated in 
Section 3.2 are satisfied. These conditions, however, greatly reduce the applicability of the design 
algorithm. In this section we will present a series of operations that can be applied to the generic SM of 
Figure 3.4 which doesn’t meet the conditions of the standard SM in order to transform it to the specific 
form. For a given general D matrix and a desired upper H∞ bound γ, the following series of scaling and loop 

shifting operations will transform the system to the required standard form. Knowledge of γ will be 
required in order to zero out the D11 matrix.  

 

Figure 3.5 Scaling and Loop-Shifting Operations to Transform the H-Infinity Control Design Model 
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These transformations must be repeated each time γ is changed as one iterates on γ to approach the 
optimal H∞ solution. Most of these transformations are norm-preserving, and they do not change the 
system's H-infinity norm. The transformation Θ however, that zeros out matrix D11, does not preserve the 

system's H-infinity norm but only its upper bound γ. In other words, although the transformed system's H-
infinity norm may differ from that of the original system, the transformed system's H-infinity norm will be 

less than γ, if and only if the original system's H-infinity norm is less than γ. The transformations were 
derived by Safonov et al. in reference [2]. The transformation algorithm is described by the following steps: 

Step-1: Use Singular Value Decomposition to factor the matrices D12 and D21 and perform the first set of 
transformations of the original SM matrices, as shown below: 

 

Step-2: Scale and partition the new matrix D11 into a (2x2) block matrix, where the lower right block D1122 
has the same dimension as D22T, and define the following matrix K∞ 

 

Step-3: Let the matrix M and the transformation matrix Θ in Figure 3.5.1 be defined as follows:  
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At this point the transformed system's D11 matrix is zero. The other matrices are: 

 

Step-4: Use Singular Value Decomposition to factor the matrices D12 and D21 that were generated in step-3. 
This final transformation will bring the synthesis model to the standard form. At this point all the blocks 
appearing in figure 3.5 have been calculated. The transformed synthesis model is the transfer function 
from: u(3)1 and u(3)2, to: y(3)1 and y(3)2. It consists of the following matrices that have been transformed as 
shown: 

 

The transformations above and below the plant P can be grouped together into two matrices T1 and T2, 
respectively, where the transformation T1 above the plant P(s) is: 
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The transformation T2 below the plant P(s) is: 

 

The D matrix of the transformed system now has components D11=0, D22=0, D12=[0, I]T, and D21=[0, I]. Since 
all the conditions are satisfied a controller can be calculated that minimizes the H∞ norm of the sensitivity 
transfer function for the transformed model. The H∞ controller that stabilizes the transformed plant P’(s) is 
shown in Equation 3.5.1.  

 

3.6 Modified H∞ Controller for the Original Plant 

In Figure 3.6 the controller J(s) is for the modified SM which was transformed into the standard form and 
was obtained from the standard H∞ algorithm described in Section 3.3. This controller must now be back-
transformed using the T2 transformation matrix in order to be applied on the original plant P(s) and have 
the same effect. The state-space representation of the controller for the original plant is shown in Equation 
3.5.1. The matrices Ac, B3 and C3 were defined in equation 3.3.5. 

 

Equation 3.5.1 Transformed H∞ Controller for the Original Generic Plant 
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Figure 3.6 The Controller J(s) is Back-Transformed to K(s) in order to Match the Original Plant 
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4.0 Setting up the H∞ Synthesis Model 
 
In this section we describe how to set up an H∞ synthesis model from a given plant in state-space form. The 
complexity of the SM is determined by the selected plant and the design requirements. In its simples form 
the Synthesis Model is shown in Figure 4.1. It consists of a multi-variable state-space representation of the 
plant that has already been prepared and it includes the necessary inputs and outputs. The inputs should 
include controls, disturbances, and uncertainty inputs. The outputs should include measurements, 
performance criteria, and uncertainty outputs. The uncertainty inputs and outputs represent internal 
parameter variations as we shall see in Section 5. The plant system may also include loop-shaping filters 
which are used to enhance performance in some of the system variables by the H∞ optimization. They are 
temporarily included in the plant model for the purpose of developing the SM. They are eventually moved 
in the controller side where they belong when the control design is complete. However, the filters increase 
the plant and SM states and also the controller complexity.  
 
The SM is created the from the plant model by picking and categorizing some inputs and some outputs. 
Some of the inputs will be chosen to be controls and some will be used as disturbances. Some of the 
outputs will become sensor measurements and some outputs will represent criteria to be minimized. Some 
of the columns of plant matrices B and D are selected to create the SM matrices B1, D11 and D21W that 
describe the input disturbances, and some of the columns of B and D are selected to form matrices B2, D12U 
and D22 that describe the control inputs. Similarly, some of the rows of plant matrices C and D are selected 
to form SM matrices C1, D11 and D12U that define the optimization criteria and some of the rows of matrices 
C and D are selected to form matrices C2, D21W and D22 that describe the measurements.  
 
There is some symmetry in the SM in Figure 4.1. The size of measurement noise input wo is equal to the 
number of output measurements ym. The measurement noise is used in the estimator design. It defines the 
reliability of the measurement. The input criteria zi is used to penalize the controls and its size is equal to 
the number of controls uc. The two square matrices D12 and D21 are not necessarily considered to be plant 
dynamics but they are adjusted by the designer to optimize the control system performance and they are 
usually diagonal matrices. Matrix D12 penalizes the control input uc and it limits the controller bandwidth. 
Similarly, matrix D21 introduces uncertainty in the measurements and prevents high gains and bandwidth in 
the estimator.  
 
The input/ output vector pairs (wi) and (zo) do not only consist of external disturbances and criteria 
variables. Regulated outputs can also be included in the disturbances and criteria variables as we shall see 
in Section 4.1. Plant uncertainties can also be included as vector pairs in the wi and zo vectors. In Section 5 
we describe the IFL method where each plant uncertainty can be represented with one additional input/ 
output pair included in the SM. This allows us to synthesize controllers which are robust to real (structured) 
parameter uncertainties. Figure 5.2 shows how the disturbance and criteria vectors are augmented with 
the inclusion of the uncertainty inputs and outputs. In section 4.2 we will modify the SM to include scaling 
gains or "Design Knobs" that can be adjusted between design iterations in order to achieve the desired 
control system performance and bandwidth. The gains scale the corresponding rows and columns of the 
SM matrices and adjust the relative effectiveness and criteria of various inputs or outputs in the H∞ 
optimization process.  
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Figure 4.1 Basic Synthesis Model 
 
4.1 Including Some Outputs to be Regulated with Commands 
 
In Figure 4.1, the SM has no commands inputs and the vector wi is an input disturbance. In the situation 
where we have some outputs zR which are directly commanded by tracking command inputs wc , in this 
case we want to achieve a small error and minimize the error zre={zR-wc} by including it in the criteria 
vector. The command wc is also included in the disturbances, as shown in Figure 4.2. The matrices C1, D11 
and D12U now consist of two sets of rows that define criteria to be minimized. The upper part creates a set 
of criteria zo similar to the criteria of Figure 4.1 and a lower part consists of the regulated variable errors zre. 
In comparison with the basic SM of Figure 4.1 the disturbance vector w is now augmented to include the 
input commands wc in addition to the disturbances wi and noise the wo. Similarly, the criterion output 
vector is also augmented and it consists of three parts: zo as before, the regulated output errors zor={zR-wc}, 
and the control input criterion zi as before. The SM augmented with regulated outputs is shown in Figure 
4.2. 
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Figure 4.2 Synthesis Model Augmented with Input Commands and Regulated Outputs 

 
4.2 Normalizing the Synthesis Model with Scaling Gains 
 
The H-infinity control design is often an iterative process. We begin with a set of design parameters in the 
SM, calculate the controller, analyze the control system stability and performance, and if the control 
amplitudes are too big or if the performance of some variables is poor in response to commands or to 
disturbances, we adjust the design parameters accordingly and repeat the process until the robustness 
versus performance criteria are satisfactory. For example, if the controller bandwidth and gain in one of the 
control loops is high, we penalize the corresponding element in the zi vector more severely to reduce the 
gain next time. If the estimator gain in one of the estimation loops is high, we should increase the amount 
of noise introduced in the SM measurements wo. If we want to improve the performance in some of the 
output variables in the criteria vector zo we must increase the corresponding gain at that output.  
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This adjustment is accomplished by introducing gains that scale the SM accordingly. There are 6 sets of gain 
vectors, 3 sets that multiply the inputs to the SM, and 3 sets that divide the outputs, as shown in figure 
(4.3). Those gains are not part of the original plant model but they are only used as design knobs for 
adjusting the relative importance (weight) of certain elements within a vector versus others in the H∞ 
algorithm. They are inserted in six places in the SM. At the three inputs: disturbance (wi), commanded 
outputs (wc), and measurement noise (wo). Also, at the three outputs: performance criteria (zo), output 
regulation error (zre), and control criteria (zi). They are modified during the design process as necessary to 
optimize the control system performance. The gains are then absorbed in the SM for the next cycle by 
scaling the corresponding rows and columns of the SM matrices. Each gain vector is described in detail 
below. 

 
1. The input disturbance gain Gwi is used to multiply the input disturbances (wi).  Increasing the 

magnitude in some of its elements, it will improve in general the system’s sensitivity to those 
excitations at the expense of performance deterioration in other variables. The gain Gwi is initially 
set to the maximum expected magnitudes of the corresponding input disturbances.  

2. The command scaling gain Gwc is used to multiply the command (wc) of a regulated output, such as 
vehicle attitude. Increasing its magnitude will improve the command following performance of the 
corresponding regulated output at the expense of performance in other variables. It is initially set to 
the magnitude of the maximum expected command.  

3. The measurement noise gain Gwo is used to define the amount of disturbance wo corrupting the 
corresponding measurements. Small magnitudes in wo will in general produce high estimator 
bandwidth and gains. It also expresses the amount of relative reliability in the corresponding 
measurement element in vector (ym), in comparison with other elements. If one element of ym is 
less reliable than other elements, a heavier gain factor should be placed in that element position in 
vector Gwo. The gain elements multiply the input wo and they are initially set to the largest noise 
magnitude expected at the corresponding measurement. 

4. The output criterion gain Gzo divides the performance criterion output vector (zo) and adjusts the 
relative performance of each output relative to others. Good performance means small responses 
to excitation inputs. To improve, for example, the performance of a certain output in the criterion 
vector (zo) the inverse of the corresponding element 1/Gzo must be large. The elements of the gain 
vector Gzo are initially set to the largest permitted magnitudes of the corresponding output criteria 
zo. If some amplitudes are exceeded in simulations due to excessive excitations, the corresponding 
Gzo gains must be reduced, which produces heavier penalization in the optimization. 

5. A similar logic applies for the regulated output errors vector. The outputs (zre) are divided by the 
scaling gains Gzr which adjust the amount of errors in the regulated outputs zre. The error in a 
regulated output is reduced by increasing the gain 1/Gzr in the corresponding output. The elements 
of the gain vector Gzr are initially set to the magnitudes of the largest allowable output errors in zre. 
The smaller the expected error the smaller the Gzr. 

6. The controls performance criterion (zi) penalizes the controls and the gain Gzi adjusts the control 
system bandwidth which affects also the amplitudes of the control inputs uc. The criterion (zi) is 
scaled by dividing it with the gains vector Gzi. Initially, the control criteria are defined by the vector 
zi=D12 uc, where the matrix D12 is set equal to unity and the elements of gain Gzi are set to the largest 
expected magnitudes of the controls uc. The gains are checked in simulations and if some of the 
controls exceed the maximum allowable amplitudes the corresponding gains in Gzi must be reduced 
which increases its penalization in the algorithm. 
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Figure 4.3 Normalized SM Including Scaling Gains of Maximum Inputs and Maximum Outputs 

 
4.3 Including Parameter Uncertainties in the SM 
 
In Section 5 we describe how internal parameter variations in the design model can be characterized by 
additional inputs and outputs which are normalized and they hypothetically connect to a unitized ∆ block. 
The Synthesis Model of Figure 4.3 is now combined with Figure 5.2, as shown in Figure 4.4. The additional 
inputs (wp) are treated as disturbances and the additional outputs (zp) are grouped with the criteria. There 
are no additional states. There are no gains included to scale the uncertainty inputs and outputs because 
the uncertainty model is already normalized for a unity ∆ block. The parameter uncertainties and the 
regulated outputs are optional and they not always included in the SM.  
 
In Figure 4.4 the scaling gains Gwi, Gwc, Gwo, Gzi, Gzre, and Gzo that were described in section 4.2 attempt to 
normalize the sensitivity function from the combined disturbance vector (wi wc wo) to the combined criteria 
vector (zi zre zo) to be less than one. The uncertainty plant in Figure 5.1 is already scaled by the IFL process 
and the uncertainty inputs wp and outputs zp are already normalized to connect with a unit-diagonal block, 
where ║Δ║≤1. In fact, the entire SM is normalized. 
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The H∞ controller closes the loop between the measurements (ym) and the controls (uc) and it attempts to 
achieve the following: Reduce the infinity norm between the combined disturbance vector (w) and the 
combined criterion vector (z) to be less than a certain upper bound (γ), meaning, robustness to parameter 
uncertainties, command following, performance against external disturbances, and of course good stability 
margins in the presence of known parameters variations in the uncertain plant. 
 
Robust performance is achieved when the H-infinity norm of the closed-loop sensitivity function between 
the combined input vector (wp wi wc wo) and the combined output vector (zp zi zre zo) is less than one at all 
frequencies. It means that the control system derived from this formulation, not only minimizes the 
sensitivity transfer function between the disturbances and criteria (both at the plant input and output for 
good performance) but also takes into consideration variations in the uncertain plant parameters and 
attempts to maintain both stability and performance despite variations. 

 

Figure 4.4 Synthesis Model Augmented with Parameter Variation Inputs and Outputs Derived from the IFL Method 
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5.0 The Internal Feedback Loop (IFL) Structure 
 
The IFL method allows internal parameter perturbations in a system to be treated like external 
disturbances by introducing fictitious inputs and outputs. This representation allows us to use µ-tools for 
analyzing robustness to uncertainties or to apply H∞ and other robust methods to design control systems 
that can tolerate a certain amount of parameter variations. To utilize the IFL concept the system must be 
expressed in the following form, where [ΔA, ΔB, ΔC, ΔD] are variations in the state-space system matrices 
as a result of variation in one of the parameters. 
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Suppose that they are (l) independently perturbed parameters: p1, p2, ... pl, with bounded parameter 
variations δpi, where their magnitude │δpi│≤ 1. The perturbation matrix ΔP= [ΔA, ΔB; ΔC, ΔD] can be 
decomposed with respect to each parameter variation as follows: 
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Where for each parameter pi 
αx(i) and αy(i)  are column vectors 
βx(i), and βu(i)  are row vectors 
 
The plant uncertainty matrix ∆P due to all perturbations can be written in the following form, where the 
perturbation block ΔP is assumed to have a rank-1 dependency with respect to each parameter pi.  
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Where Mx and My are stacks of column vectors, and Nx and Nu are stacks of row vectors as shown below 
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and 

 
Where Δ = diag [ δp1, δp2, δp3,.... δpl ] is the diagonal block of Figure 5.1 containing the uncertainties. 
Notice, that in order to simplify the implementation, the columns of matrices Mx and My and the rows of 
matrices Nx and Nu are scaled, so that the elements of the diagonal block Δ have unity upper bound. Now 
let us introduce two new variables (zp and wp) and rewrite the equations in the following system form in 
order to express it as a block diagram. 

ppuxp zwanduNxNz ∆−=+=  
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The perturbed state-space system can be written in the following augmented representation which is the 
same as the original system in the upper left side, with some additional input and output vectors, an input 
and an output for each parameter uncertainty. 
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If we further separate the plant inputs (u) into disturbances (w) and controls (uc), that is, u=[w, uc], and if 
we also separate the plant outputs (y) into performance criteria (z) and control  measurements (ym), the 
above system is augmented as shown below. 
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The above formulation is used for µ-synthesis or robustness analysis using µ-methods. It is also shown in 
block diagram form in Figure 5.1. The uncertainties block ∆ is connected to the plant by means of the 
inputs wp and the outputs zp. The columns in the Mx, Mw, and Mym matrices and the rows in the Nx , Nw, and 
Nuc matrices are scaled by dividing with the square root of the corresponding singular value which 
normalizes the elements of the uncertainty block ∆ to unity. Figure 5.2 shows how the H-infinity synthesis 
model is augmented by the inclusion of the parameter uncertainty inputs and outputs. 
 
The control system K(s) is designed to stabilize the plant P(s). When the feedback loop is closed between ym 
and uc the control system is also expected to keep the plant stable despite all possible variations in the 
elements of the block ∆ which are allowed to vary between -1 and +1. This property is defined as “Robust 
Stability”. In addition to “Robust Stability” the control system must also satisfy “Nominal Performance” 
which is a bounded and well-behaved response between the disturbances w and the criteria z. We also 
have third property for the perturbed plant which is called “Robust Performance”. The plant P(s) has the 
control loop closed and also the uncertainty loop closed via the ∆ block. The closed-loop system satisfies 
the “Robust Performance” property when it remains stable and it is also able to satisfy the above two 
performance criteria, which is, the transfer function between w and z satisfies performance despite all 
possible variations in the internal parameters represented in the normalized uncertainties block ∆, where 
the individual magnitudes δi do not exceed 1. This happens when the structured singular value frequency 
response (µ) between the combined vectors: [w, wp] and [z, zp] is less than 1 at all frequencies. 
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Figure 5.1 Robustness Analysis Block showing the Uncertainties IFL loop, the control feedback loop, the disturbances 
(w), and performance outputs (z) 
 
This system can also be represented in matrix transfer function form as follows 
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After closing the loop with a stabilizing controller K(s) the closed loop system is represented with the 
following transfer function matrix 
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The above transfer functions are used to analyze robustness and performance of the closed loop system 

Robust Stability: Stability robustness with respect to parameter uncertainty is determined by the transfer 
function T11(s). Smaller ║T11║∞ allows larger parameter uncertainty for closed loop stability. The closed 
loop system is considered to be robustly stable with respect to the parameter perturbations block Δ, where 
║ Δ ║≤1, when the µ{T11(ω)}< 1 at all frequencies (ω). 
 
Nominal Performance: Nominal performance is used to calculate the system’s sensitivity to excitations and 
it is obtained from the transfer function T22(s). This transfer function must be scaled by multiplying its 
inputs with the max magnitude of the excitations and by dividing its outputs with the max allowable error. 
The system satisfies Nominal Performance when the scaled ║T22(ω)║∞< 1 at all frequencies (ω). For 
example, maximum wind-gust velocity disturbance must not exceed the maximum allowable dispersion in 
angle of attack. 
 
Robust Performance: is achieved when the system meets the performance and robustness requirements 
together. This happens when the following condition is satisfied at all frequencies. 
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5.1 Parameter Uncertainties Modeling Program 
 
There is a Flixan program that implements the IFL method and it can be used to create the additional inputs 
and outputs in a flight vehicle system that model the internal parameter variations. The fictitious inputs 
and outputs theoretically connect with the normalized uncertainty block ∆, as shown in Figure 5.1, and it is 
assumed that each element of the diagonal uncertainty block ∆ can vary between ±1. The IFL program calls 
the flight vehicle modeling program that processes the vehicle data from an input file and generates state-
space systems. In addition to the vehicle dataset, the program also reads the uncertainties from a separate 
dataset which is also included the same input file (.Inp).  The algorithm calls the vehicle modeling program 
multiple times and processes the uncertainties together with the vehicle data. It begins by processing the 
nominal vehicle dataset and repeats the data processing for each parameter variation. It eventually 
generates the uncertainty state-space system which is similar to the nominal system but it includes the 
additional input/ output pairs which are supposed to connect with the extracted uncertainty block ∆. The 
following algorithm describes the process of calculating the uncertainty system: 
 

1. The modeling program is used initially to process the nominal set of vehicle data and to create the 
“known” plant state-space model [A, B; C, D]. 

2. One (and only one) of the vehicle data parameters must be modified at a time, either increased or 
decreased from its nominal value by an amount that is equal to the maximum expected variation 
(δp1) and the vehicle data is reprocessed by the vehicle modeling program to create a new state-
space system [A1, B1, C1, D1] that corresponds to parameter #1 variation. The matrix difference 
between the nominal and the perturbed state-space models is calculated: 
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3. This matrix is decomposed using SVD to calculate the column vectors αx(1) and  αy(1) and the row 
vectors βx(1), and βu(1), as shown in the equation.  

4. Restore the previous parameter to its original value and modify another parameter #2 in the vehicle 
input data by an amount δp2 that represents the maximum variation of this parameter, as in step-2. 
Repeat steps 2 and 3 and calculate the vectors αx(2),  αy(2), βx(2), and βu(2).  

5. Select another parameter to perturb and repeat steps 2, and 3 until there are no more uncertain 
parameters to vary. Stack the row and column vectors as shown to create the stacks of column 
vectors: Mx and My and the stacks of row vectors: Nx and Nu.  

6. These matrices are then used to create the additional inputs and outputs in the state-space model. 
The columns of matrices Mx and My and the rows of matrices Nx and Nu must also be scaled 
according to the magnitude of the uncertainties δpi so that the interconnections correspond to a 
unity normalized ∆-block. 

 
  



35 
 

The uncertainty model is then used in combination with the flight control system to analyze the closed-loop 
system performance and robustness to uncertainties by calculating the µ-frequency response of the plant 
across the interconnections with the ∆ block, as shown in Figure 5.1. That is, between wp and zp, with the 
control loop K(s) closed.  
 
The parameter uncertainties data-set in the input file is similar to the vehicle dataset. It includes variations 
from the nominal vehicle data and a title above the data.  The variations should correspond to the 
parameters in the vehicle dataset. There should be the same number of aerosurfaces, engines, slosh tanks, 
etc. Only the variations in the uncertain parameters should be non-zero. Obviously, the variations in the 
parameters which are known and do not vary must be set to zero. An additional input/ output pair is 
created in the system for each uncertainty. In some cases, two connections are created for one parameter 
variation, such as the XCG, which affects both pitch and lateral axes. In this case the pitch and lateral 
systems must be decoupled, and one I/O pair is associated with the pitch system and the other I/O pair is 
associated with the lateral system. 
 
The Flixan program identifies datasets that contain parameter uncertainties from this label: “UNCERTAIN 
PARAMETER VARIATIONS FROM NOMINAL …” which is located above the dataset. There is also a title below 
this label which identifies a particular uncertainties dataset, similar to all other types of Flixan datasets. This 
title associates the uncertainties data with a vehicle input data, and it must be included at the bottom of 
the vehicle input data in order to associate the variations with the actual vehicle parameters. 

 
Figure 5.2 Synthesis Model Augmented with Uncertainty Inputs (wp) and Uncertainty Outputs (zp) 
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6.0 Running the H-Infinity Program 
 

The H-infinity program includes several options. The user must first create the Synthesis Model from the 
plant system and then use it to design the control system. We assume that the plant system to be 
controlled is already created and saved in the systems file. To run the program, select “Program Functions” 
from the Flixan main menu, then “Robust Control Synthesis Tools”, and then “H-Infinity Control Design”, as 
shown below. Select also the directory that includes the system files. The next menu is for selecting the 
systems file (.Qdr) and from the H-infinity main menu we select the first option to create the SM. 
 

 

  
 
6.1 Creating the Synthesis Model 
 
The first option is used to create the Synthesis Model from the plant system as it was described in Section 
4. The SM is also a state-space system consisting of 9 matrices and it is saved in the same systems file. This 
interactive utility creates the SM by helping the user to define the control and disturbance inputs, the 
measurement and criteria outputs, and also the performance requirements. They will all be captured in the 
SM. From the main menu of the H-Infinity program select “Create a Synthesis Model (SM)” to create the SM 
from the plant model. The following menu shows the titles of the systems which are included in the 
systems file. Select the design plant and click on “Select”. The SM will be created from this system.  
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The first menu is used to define parameter uncertainties. That is, inputs and outputs that connect to the 
uncertainties ∆ block, as described in Section 4.3. In this example we did not define any uncertain 
parameters and have not created any uncertainty inputs and outputs. We, therefore, click on “No 
Uncertainties” to continue. 
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The next menu is used to define external disturbance inputs. The plant model has 3 inputs and all 3 will be 
considered as disturbances. Click on “Select All” and then on “Enter Selects” to continue. 

 
 
The next menu is for selecting the control inputs. There are two control inputs, roll and yaw control-
demands. Select one at a time and then click on “Enter Selects” to continue. 

  
 
The next dialog is used for selecting outputs to be optimized. In this example the output of the plant model 
consists of the entire state vector of 6 variables. We will optimize only four of those state variables, the two 
attitudes, beta, and β-integral. Select one variable at a time and then click on “Enter Selects” to continue. 
The next menu is for selecting outputs to be regulated with input commands. In this case we do not have 
any. Do not select anything but click on “Enter Selects” to continue. The next menu is for selecting the 
output measurements. In this example the measurements are the entire state vector. Select all of them by 
clicking on “Set Output= State” and then click on “Enter Selects” to continue. 
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We have now finished defining the input and output variables. The next step is to enter the gains that will 
be used to scale them, as described in Section 4.2. Those gains are performance parameters that can be 
changed in the next design iteration. The dialog below scales the disturbance inputs. Click on one input at a 
time to highlight it, click on “Select Variable”, enter the scaling gain which is the maximum expected 
disturbance at each input, and click on “Enter Scale” to accept it, one at a time. The scale value appears in 
the menu next to the variable label. When you finish click on “Okay” to go to the next dialog. 

 
 
This dialog is for entering the measurement noise. In this example the measurement is the entire state-
vector and we do not want to build a state estimator. We could if the measurement was noisy, but in this 
case we tell the program that we don’t want the estimator by inserting zero or very small noise magnitude 
in each output/state variable. The program requires a confirmation that you do not want to create an 
estimator, so you enter “Yes” to calculate a state-feedback control gain and not a dynamic controller. 
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The next step is to enter gains for the performance optimization criteria. That is, the maximum acceptable 
magnitude at the criteria outputs defined, which are: the maximum roll and yaw attitude errors, maximum 
beta transient magnitude and its integral. Reducing the gain value for a specific performance output results 
into better performance and smaller transient for that variable. Select one variable at a time, enter the gain 
and click on “enter scale” to accept it. When you finish click on “Okay” to go to the next dialog. 

 

The controls are also included in the optimization criteria. By scaling both: performance and control  criteria 
we define the trade-off between performance, sensitivity and control bandwidth. In this example we have 
two controls. If we increase the gain in one of them, let’s say the roll control, we are telling the mathematic 
algorithm to provide more control in the roll axis which means bigger bandwidth in roll and the system will 
be faster in roll. Enter the two gains as before and click on “Okay” to proceed. Finally enter a short label 
that will appear at the end of the Synthesis Model title in the systems file. 
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The H-Infinity SM is saved in the systems file and it will be used to design the state-feedback controller 
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The scaling gains are included on the side of the corresponding variables to be scaled. 
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6.2 Reading and Checking the Synthesis Model 
 
If the SM is already created and saved in the systems file, from the H-infinity main menu you choose the 
second option and click on “Select”. The following menu shows the SM which are already saved in the 
systems file. In this case there is only one. Select the SM and click on “Select”. The program will read the 
SM and check the observability and controllability.  
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The program confirms that the SM satisfies the expected observability and controllability requirements and 
displays the SM matrices graphically in system’s form in a dialog shown below. The 9 SM matrices appear 
color coded and also the gains which scale the disturbances and the criteria. The color code reference 
magnitudes appear at the lower-left corner. In this example the A-matrix consists of 6 states. There are 3 
external disturbances, 6 measurements noise inputs which are set to almost zero (dark brown), and there 
are 2 control inputs for roll and yaw control. In the outputs we have 4 performance criteria, and 2 control 
utilization criteria. C2 is the identity matrix which means the 6 outputs are equal to the state vector. 
Definitions of the SM variables are listed in tabs on the left-hand side. The SM parameters can be modified 
interactively and the updated SM can be saved in the systems file. 

 
 
 
6.3 Running the H-Infinity Program Interactively 
 
After reading and checking the SM controllability and observability you can select the third option from the 
main menu to design the H-infinity controller from the SM and click on “Select”. In this case, the program 
confirms that the solution will be a state-feedback gain rather than a dynamic controller and it will use the 
state-feedback algorithm. 
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We now begin the iterative process of attempting to minimize the upper bound γ of the infinity norm of the 
sensitivity transfer function between the 3 disturbance inputs and the output criteria, which in this case 
there are 4-performance and 2-control criteria. We begin with an arbitrary γ upper bound and try to find 
the smallest γ magnitude in (dB) that will not violate the algorithm requirements. We must enter γ in 
decibels. We first enter γ=10 which is too low and click on “Yes” in the next dialog to try a bigger value. 
Next time we enter γ=20 which is also low and click on “Yes” again to try an even bigger value. After 2-3 
iterations we find that γ=30 works and we click on “No” meaning that we do not want to try another value 
but to accept the current controller. 
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The following Figure shows the control system eigenvalues with the control loop closed between the 
measurements (y) and the control inputs (u). They are all stable, as expected. We return to the H-infinity 
main menu from where we can save the controller gain by clicking on “Save the H-infinity Controller in 
Systems File (x.Qdr)”. 
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6.4 Running the H-Infinity Program in Batch Mode 
 
The SM can also be created from the plant system in batch mode and the SM can be processed by the H-
infinity program in batch mode to create the control system. The necessary datasets that perform those 
functions must be created in the input file and be processed in batch mode, either individually or via a 
batch dataset. In the example that follows the input file includes a dataset that creates the SM “Crane 
Design Model with Y1 Integral/SM-1” from the plant system “Crane Design Model with Y1 Integral”. There 
is also a dataset that generates the controller “H-Infin Control for Overhead Crane System” from the SM. 
 

 

 
The following dataset creates the SM. It defines which of the system inputs are controls and which are 
disturbances. Also, which outputs are measurements and which ones are criteria. It includes also the input 
and output scaling gains. 
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The entire input file can now be processes in batch mode by running the batch set to create the Synthesis 
Model and the control system. 

 

 


