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Background 
 
In aerospace vehicle development one of the central features is the simulation model of the vehicle 
dynamics. This model is a mathematical representation of its expected behavior and dynamic response 
to the controls and gust disturbances. This math model allows the stability and control engineer to 
develop control laws that allow a human pilot or an autopilot to maneuver the vehicle and to perform 
its mission. The math model also forms the basis for simulators used to train a pilot and to develop the 
skills needed to operate the vehicle. To be able to predict the resulting motion of a vehicle it is 
necessary to understand the physics of how forces cause objects to move. This field of study is called 
dynamics and is a college-level course. Dynamics also examines the behavior of structures under the 
effects of external forces and torques. Equations of motion describe how the vehicle will move in 
response to applied forces. For example, simple equations describe how a rocket will accelerate when a 
constant thrust is provided by the rocket's engine. More difficult equations describe how the sloshing 
of fuel in a rocket's fuel tank will cause the rocket's structure to vibrate or throw the rocket off-course. 
Another type of modeling would be to predict, in a mathematical equation, how an aircraft will 
respond to hitting an updraft in the atmosphere, or how the aircraft will respond to the deflection of 
various control surfaces at different airspeeds. These equations are differential equations, in which the 
rate of change of some quantity is described as being dependent upon other quantities and their rates of 
change. The set of mathematical equations that describe these motions are collectively called a math 
model or simulation model of the vehicle, and they can range in complexity from a single equation to a 
complex set of equations. Complex vehicle models are, for convenience, broken down into subsystem 
models that deal with different sets of dynamics. 
 
This section describes the equations of motion that can be used to describe the dynamic characteristics 
of different types of flight vehicles, such as: rockets, launch vehicles, re-entry vehicles, airplanes, 
gliders, and spacecraft, inside or outside of atmosphere. They can be used to model generic flight 
vehicles, such as: an aircraft or a Space Shuttle from lift-off to re-entry. The equations describe how a 
dynamically complex vehicle model will behave in response to a combination of applied forces and 
torques, and they are presented in two forms: (a) the non-linear large angle equations suitable for 6-dof 
time-domain simulations, and (b) the linearized equations that describe small variations of a vehicle 
from its nominal trim position. The Flixan flight vehicle modeling program uses the linear equations to 
create state-space systems, mainly for flight control analysis. The coefficients of the linearized 
equations are functions of vehicle parameters at fixed flight conditions, “time-slices” for rockets, 
Mach and alpha for aircraft. The parameters include: mass properties, aerodynamic coefficients, 
trajectory data, slosh parameters, and structural modes. The vehicle data are obtained from 6-dof 
simulations, wind tunnel data or CFD models, mass properties, fuel slosh models, and finite element 
structural models (such as Nastran).   
 
Linear vehicle models are used to analyze short period dynamic behavior of flight vehicle in terms of 
stability, robustness against uncertainties, and system performance in response to commands and to 
wind gusts disturbances. Launch vehicles are usually controlled by small deflections of the TVC 
engines (δe) with respect to their trim positions. Trim positions are the gimbal angles required to 
balance the aero moments. Engine throttling can also be used in some cases to control the vehicle by 
varying its engines thrust by from its nominal thrust (Te), that is, (Te ±δTh). Entry vehicles, gliders, and 
aircraft are controlled by deflecting the control surfaces (±δcs) from their nominal trim angle (Δcs) 
positions. The inputs to the dynamic models are: control surface and engine deflections, thrust 
variations or throttle inputs, and wind-gust velocity in (feet/sec). In spacecraft we also have reaction 
wheel and CMG torques but those are described in a different section. In Flixan the thrust variation 
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inputs are normalized by dividing the thrust variation input with the nominal engine thrusts. This 
normalization is defined as throttle control (δTh/Te). Wind-gust inputs are disturbances defined as 
variations in wind velocity. The direction of the gust relative to the vehicle is fixed and defined in the 
input data. The vehicle outputs are: attitude, rates, accelerations, angles of attack and sideslip (α, β), 
and vane sensors that measure (α, β) with flexibility at specific locations. The sensor specifications, 
such as: body or stability rates, Euler or rate integral attitudes, accelerometer types, etc. are defined in 
the vehicle data. The Flixan program creates the dynamic models in state-space form which is a well-
known mathematical representation used in modern control applications, such as, singular value/ 
robustness analysis, LQG, and H-infinity control design methodologies.  
 
One apparent limitation of linear modeling is that its state-variables describe only variations relative to 
their nominal values. It captures, however, the dynamic characteristics of the vehicle for small 
dispersions relative to its trimmed flight condition and this is acceptable for flight control design, 
performance evaluation and stability analysis. Six-dof equations are often used to simulate the entire 
non-linear behavior of the vehicle trajectory but they usually include only the rigid-body motion, they 
are very complex and they cannot be used for control design and control analysis. Both types of 
equations are used from different groups of people for flight vehicle design, to address different issues. 
The linearized model is valid if its parameters remain fairly close to the target trajectory and the trim 
condition defined from the 6-dof simulation. The control system which is designed based on a linear 
model must be able to stabilize the vehicle in this design condition and to provide a certain amount of 
robustness to parameter uncertainties. It must also have the control authority to correct small 
departures from the target trajectory caused by wind-gusts. 
 
Control analysis and design is based on linear models at fixed flight conditions with constant 
coefficients and the control gains are interpolated between design points. The coefficients of the 
vehicle equations, however, are not fixed but they are time varying and they are functions of the mass 
properties, aerodynamics, Mach number, alpha, and other parameters which are changing as the 
vehicle depletes fuel and changes speed and altitude along a trajectory. The common approach in flight 
control design is to derive control laws using linear models at fixed flight conditions and interpolate 
the control laws in between. The assumption is that, if the flight control system can provide an 
acceptable performance, stability margins, and robustness to uncertainties at multiple flight conditions 
along a trajectory (or Mach versus alpha) this will obviously be a good indication that the vehicle can 
be successfully guided without deviating from the trajectory due to instability or due to its inability to 
respond to guidance signals. This assumption is generally acceptable when the variation of vehicle 
parameters occur at rates significantly lower than the time constants associated with the vehicle 
dynamics. The "time-slice" model is valid only for relatively short periods of time, (in the order of a 
few seconds), and the time constant associated with the rate of change of the coefficients is usually 
large in comparison with the time constants associated with the vehicle short period dynamics. Critical 
control design and analysis conditions for launch vehicles are at maximum dynamic pressure, lift-off, 
maximum slosh, before and after staging, and near main engines cut-off. For aircraft, design and 
analysis is performed for a wide range of Mach versus angle of attack conditions and the gains are 
interpolated in-between. The linear modeling and control analysis, however, must be completed with a 
detailed 6-dof non-linear simulation with multiple trajectory dispersion runs, various winds and 
parameter variations. 
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Equations of Motion  
 
The rigid-body equations used in the flight vehicle modeling program consist of three rotational (roll, 
pitch and yaw), and three translational equations along x, y and z axes. The vehicle forces and 
moments generated in this model are calculated with respect to the body axes system. The reference 
axes are shown in Figure (2.1a). The x axis is aligned along the fuselage reference line and its direction 
is positive along the velocity vector. The z axis is positive downwards, and the y axis is defined by the 
right-hand rule, perpendicular to the x and z axes and positive towards the right wing. The Euler angles 
(φ, θ, ψ) define the vehicle attitude with respect to the inertial reference axes. In a launch vehicle the 
attitude reference is usually measured with respect to the launch pad with the Euler angles initially at 
(0̊, 90̊, 0̊) respectively. Coupling between the pitch and lateral axes is also included in the equations of 
motion. This coupling may occur due to lack of vehicle symmetry, such as, thrust mismatch in the 
TVC, products of inertia, a non-symmetrical structure, or due to aerodynamic coupling coefficients, 
such as: Cmβ, Cnα, or flying at a constant roll angle and sideslip, etc. The x, y, z coordinates of 
various vehicle locations are defined in the input data with respect to the vehicle reference axes. These 
locations include: engine gimbals, control surface hinges, IMU, gyros, accelerometers, slosh masses, 
the CG and moment reference center (MRC), etc. Figure (2.1) is an example of coordinate axes 
showing the origin and directions of the reference axes in a typical flight vehicle. In some cases the 
trajectory model, the mass properties, and the structures model are defined in a different coordinate 
directions and units and the analysts must perform the proper transformations and unit conversions in 
the mass properties, aero data, trajectory, and modal data when setting up their database.  
 
Feedback from the IMU, rate gyros, and accelerometers is used to control the vehicle attitude and 
flight direction. Feedback from the accelerometers or vanes is often used for “load-relief” to control 
the normal and lateral aerodynamic loading on the structure, especially in launch vehicles. Normal 
acceleration feedback is also used to control the rate of descent in a re-entry vehicle. Variations in 
altitude and velocity (δV, δh) are also included in the equations state vector to implement the phugoid 
dynamics. These states are used for simulating the longitudinal guidance laws in aircraft or re-entry 
vehicles at high angles of attack, and using speed-brake, variable thrust, or alpha control as means to 
regulate the speed and altitude. Cross-range velocity is also included in the equations and used for 
lateral guidance. There are situations, however, where some of states and outputs are not required in 
the analysis and they can be taken out in order to minimize the state-vector. There are Flixan utilities 
for post-processing and reducing the vehicle state-space model. For example, the (δV, δh) states are 
not useful in a launch vehicle with a fixed thrust and flying at zero (α). The x-acceleration output is 
also not needed because it cannot be controlled from a TVC input (δe). The system modification 
utilities are used in extracting a smaller system from a bigger system, or for separating a coupled 
system into a pitch and lateral subsystems. Note that, it is a good practice to reduce the vehicle model 
by removing the non-contributing state-variables, especially when creating models for control 
synthesis, because most design algorithms require minimal state-space realizations. 
 
Aerodynamic Models 
 
The aerodynamic coefficients used in the equations are based on complex aerodynamic models. An 
aerodynamic model describes how the vehicle will respond to forces caused by motion of the vehicle 
through the atmosphere, and predicts the effects of each different control surface (such as the flaps, 
rudders, ailerons, etc.) upon the motion of the vehicle. Aerodynamic models are often complex and are 
usually based on wind-tunnel data, in which the forces and moments exerted on a scaled model are 
measured at various speeds, flow angles, and with combinations of control surface deflections, until 
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enough data is available to predict the forces and moments that will act on the full-scale vehicle. 
Increasingly more data is being added by using a technology called Computational Fluid Dynamics 
(CFD) in which the same forces and moments are predicted in a computer program, using the 
geometry (shape) of the vehicle in a virtual wind tunnel. The resulting aerodynamic subsystem model 
will predict what the forces and moments would be as a result of any combination of control surface 
deflections, thrust settings, and flight conditions. The equations of motion described here use 
aerodynamic coefficients and derivatives that are extracted from these complex aerodynamic models at 
steady-state conditions. 
 
Structural Flexibility 
 
Structural flexibility is a very important issue in flight control system design and stability. Flight 
vehicles are designed with minimum weight objectives and hence in some cases their structures exhibit 
a considerable amount of flexibility, requiring the development of flexible structure equations to 
account for motion of various parts of the vehicle in relation to other parts. Long and slender vehicles 
made of lightweight materials will require some attention to this aspect of modeling. Some parts of the 
vehicle can develop considerable amounts of displacement and acceleration as a result of excitations 
and structural flexibility in addition to the displacement and acceleration that arise owing to the rigid 
body motion. The structural dynamics should be considered as an integral part of the control loop. If 
the deformation characteristics are ignored, the flight vehicle may not be properly controlled, and in 
many instances it may exhibit self-excited divergent oscillations that can be destructive. Thus, the 
control system designer must be aware that divergent structural feedback can occur and must ensure 
that the flex phenomena are properly modeled and analyzed. Flexibility also limits the control system 
bandwidth, affects vehicle performance, and often requires filter design in the control system. In 
launch vehicles the main source of flex mode excitation is the TVC. In aircraft, the acceleration of the 
vehicle in combination with the aerodynamic forces can excite the structure into flexure oscillations, 
especially in the wings and the tails. This causes significant aero-elastic phenomena to occur which 
may have a serious impact on vehicle stability and performance.  
 
The elastic behavior of a vehicle structure can be represented with a superposition of flex modes which 
are excited by the actuator forces and moments, slosh forces, aerodynamic coupling, and other 
disturbances. The term “elastic modes” refers to the normalized mode shapes of the flight vehicle in 
“free-free” vibration. The mode shapes and frequencies of the “free-free” vehicle (the modal data) are 
obtained from a finite element modeling program, such as Nastran. Each bending mode is represented 
by a second order transfer function with a low damping coefficient (ζj), and a resonance frequency (ωj 
rad/sec). The modal equation is excited by forces and moments acting on the vehicle structure in 
different locations, and also by aerodynamic forces (aero-elastic terms). The coefficients of each 
bending mode are derived from the finite elements model. The modal data for each mode consist of 
mode frequency (ωj), the generalized mass mg(j), and generalized mode shapes (φ), and slopes (σ), 
(eigenvectors), in different locations on the vehicle (nodes). In most applications 20 to 80 modes is 
sufficient to get an accurate representation of the structural flexibility. Sometimes as many as 400 
modes can be included for flight verification. When a sensor is mounted on the structure, in addition to 
the rigid-body motion, it also measures a linear combination of modal displacements (ηj) from all flex 
modes which are observable at that sensor. The elastic modes produce high frequency oscillations 
superimposed on the the rigid body measurements.  
 
The aero-elastic coupling between the aero-surfaces and flexibility is implemented using two different 
approaches. The first approach is easier to model but less accurate. It assumes that the structure is 
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excited only by the aerodynamic forces and torques at the hinges generated by the deflections and 
accelerations of the aero-surfaces, which are assumed to be rigid, and they couple with the vehicle 
structure as separate bodies. It requires modal shapes at the aero-surface hinges. The mass properties of 
the aero-surfaces, gimbaling engines, and slosh masses should not be included in the FEM model 
because they couple with the vehicle by the forces generated by the pivoting bodies as described in the 
equations. The second method is more efficient because it uses aero-elastic data created from an aero-
elastic model, such as a CFD used for flutter analysis. It captures the dynamic coupling between 
structural flexibility and the aerodynamic forces and moments created by the vehicle motion due to: (α, 
β, p, q, r) variations, and also due to the deflection of the aero-surfaces (δas). In addition to the modal 
data it requires two additional sets of coefficients: the “Generalized Aero Force Derivatives” (GAFD) 
data and the “Inertial Coupling coefficients” or “h-parameters”. The second approach includes also 
equations and GAFD coefficients that calculate the moment variations at the aero-surface hinges 
caused by the vehicle motion, flexibility, and surface deflections. The “Inertial Coupling Coefficients” 
define the dynamic coupling between structural flexibility and the engine or control surface angular 
accelerations. The finite-elements model in this case must include the control surfaces or the engines 
rigidly attached at the hinges. The surfaces are released in the equations via the h-parameters. Both 
approaches require a Nastran model that is “free-free”. 
 
Propellant Sloshing 
 
The dynamic behavior of propellant sloshing inside the tanks is a very important issue in launch 
vehicle stability and design. Sloshing is defined as the periodic motion of the free surface of a liquid in 
a partially filled tank or container. Typical fuels and oxidizers used in launch vehicles are liquid 
oxygen (H2O), liquid hydrogen (LH2), peroxide (H2O2), hydrazine, etc. Slosh frequencies depend on 
the tank size and acceleration, and they typically range between 2.5 to 6 (rad/sec). Slosh frequencies 
are usually lower than structural resonances but they are sometimes near the control system bandwidth 
and may create problems. Most of the time they are passively phase-stable but sometimes they may 
require lead-lag phase compensation. Propellant sloshing is induced by variations in normal and lateral 
accelerations due to maneuvering, thrust variations, wind gusts, etc. If the liquid is allowed to slosh 
freely, the uncontrolled oscillations can produce disturbance forces that cause additional accelerations 
on the vehicle. These oscillations are at low frequency and sometimes close to the control system 
bandwidth. They are sensed and responded to by the flight control system, forming a closed-loop that 
may degrade performance or lead to an instability. It is also possible for the slosh resonances to 
interact with flexibility and to cause even further deterioration in stability and to excite oscillations. 
 
In general, fuel sloshing is an undesirable effect on the vehicle, not only in terms of potential 
instability and attitude oscillations but it can also cause other problems and hardware malfunctions. 
The most commonly used mechanical solution for dampening slosh instabilities is to include 
mechanical baffles in the interior of the tank. There are situations, however, where slosh instabilities 
may be tolerable. For example, if the duration of the instability is relatively short or if the slosh mass is 
small in comparison with the total vehicle mass creating a small disturbance or a limit-cycle. In reality, 
the amplitude of the slosh mass oscillation inside a tank will not grow forever, but it is limited by the 
radius of the tank. In fact studies show that when the slosh mass amplitude reaches approximately 3/4 
of the tank radius the fuel wave brakes, splashing the liquid inside the tank and the oscillations start 
building up again from low amplitudes. When slosh instabilities occur, engineering intuition is 
required to determine the severity of the problem. One has to consider what would the impact be on the 
vehicle if the slosh mass is allowed to limit-cycle at 3/4 tank radius. It may be acceptable if the mass is 
small. 
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The liquid motion can be analyzed using pendulum or spring mass analogy models. The sloshing 
propellant is often approximated with an oscillating spring-mass system with very low damping 
coefficient. One end of the spring is attached at a point in the tank centerline below the surface and the 
other end of the spring is attached to a mass that represents the sloshing part of the fuel. The slosh 
mass has two translational degrees of freedom and generates normal and lateral forces on the vehicle 
(along the z and y axes). It is constrained to oscillate along a plane that is perpendicular to the 
acceleration vector. The spring mass linear model is acceptable for linear stability analysis, but it is too 
conservative for larger slosh mass deflections and for time domain simulations because it does not 
limit the slosh mass deflections, as the pendulum model does. The slosh parameters required to 
implement the spring-mass slosh model are: the slosh mass (ms), the slosh frequency (ωs) in (rad/sec) 
which is a function of vehicle acceleration, the damping coefficient (ςs), and the average location of the 
slosh mass (xs, ys, zs) relative to the vehicle reference frame. The slosh parameters are usually obtained 
from experiments. Typical values of slosh masses in launch vehicles vary between, 100 to 5000 slugs. 
The slosh frequencies at 1 (g) vary between: 0.4 to 1(Hz). The slosh frequency is proportional to the 
square root of the vehicle acceleration. The slosh frequencies in the Flixan data are defined at 1 (g) and 
they are automatically scaled by the program by multiplying them with the square root of the 
acceleration in g's. Two frequencies per tank must be entered for the z and the y slosh oscillations 
separately because they may be different due to tank asymmetry. The slosh damping coefficients (ςs) 
are usually very small and they vary from 0.0002 for a tank without baffles to 0.002 for a tank with 
baffles. They are also defined twice per tank due to asymmetry. The spring mass analogy model is 
shown in Figure (2.6.1). The slosh masses should not be included in the vehicle mass properties (mass, 
inertias, and cg calculations). Its effects on the vehicle are defined by the forces which are presented by 
the equations described in Section (2.6). 
 
Vehicle/ Actuator Dynamic Coupling 
 
The inertia forces introduced by the accelerating motion of gimbaling engines or control surfaces may 
also cause dynamic instability. The "tail-wags-dog" are reaction forces and moments applied on the 
vehicle at the gimbals or surface hinges. They are created by the swiveling (accelerations) of the TVC 
engines or the control surfaces. On a flight vehicle controlled by gimbaling engines, an excitation 
frequency exists at which the magnitude of the engine inertia reaction force is equal and opposite to the 
magnitude of the lateral component of thrust, or for a pivoting control surface, the force at the hinge 
due to the surface inertia is equal to the lateral component of the aero force. Below this so called "tail-
wags-dog" (TWD) frequency, the resultant lateral force at the gimbal is predominantly due to thrust 
being in-phase with the gimbal angle. That is, an increase in gimbal angle results in an increase in 
lateral force. Above this frequency, the engine inertia forces produce the dominant lateral force which 
is in-phase with the gimbaling acceleration, or 180° out of phase with the gimbal angle. The TWD 
introduces a complex pair of zeros in the transfer function “θ(s)/δ(s)”. A 180° phase reversal occurs at 
frequencies greater than the TWD frequency and a system designed without the TWD consideration 
may perform unsatisfactorily above the TWD frequency. In particular, some of the higher frequency 
flex modes may be driven into divergent oscillations by this phase reversal if adequate structural 
damping or filter attenuation is not present. The TWD frequency should, therefore, be higher than the 
control system bandwidth. Fortunately, the TWD phenomenon provides significant amount of 
attenuation at around the TWD frequency which helps the flex mode attenuation.  
 
Oscillations due to TWD phenomena have occurred during staging when the engines thrust decays and 
for a few seconds an active control system exists with very low or zero thrust, causing the TWD 
frequency to drop considerably. The drop in the control force phase-reversal then drives some flex 
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modes to instability causing divergent oscillations until the hydraulic pressure in the actuators is 
depleted and the oscillations cease due to lack of actuation. This type of problem is fixed by phasing-
down the control system gains during staging. TWD type of instabilities have also occurred in aircraft 
exciting control surface oscillations at low speeds or during ground testing when the control system is 
turned-on. The aero surfaces oscillate at their local natural frequency. These type of problems are 
usually alleviated by including filters in the control loop and stiffening the backup structure of the 
control surfaces in combination with detailed control analysis and simulations. 
 
The dynamic coupling between the engines or surfaces, the actuators, and the effector backup structure 
play a critical role in the control system stability and in effector performance. It often causes “tail-wag-
dog” type of oscillatory instabilities if not properly designed. Oscillations may occur due to 
interactions between actuator dynamics and the supporting structure of the control surface or 
gimbaling engine. Sometimes all three deformations contribute to instability: actuator flexibility, local 
and vehicle body deformations. They couple with the actuator servo nonlinearities and cause a local 
control instability. This type of instability sometimes is not predicted in the pre-flight analysis due to 
lack of modeling details. A filter is often included either in the control system or in the actuator control 
loop to eliminate the instability problem.  
 
Another effect that involves the actuator and the effector backup structure and requires proper 
modeling is the "load-torque", which is an external loading torque at the hinge or gimbal of the 
effector. When the vehicle accelerates, as a result of maneuvering or due to disturbance forces, the 
accelerations create an external loading torque that may react against the control torque provided by 
the actuator. These phenomena are discussed in Section (2.8) and also in the actuator section in 
Chapter 4. Initially the TWD dynamics and load-torque feedback are not included in the preliminary 
modeling and analysis phase often due to lack of effector data. They are incorporated later as the 
design matures. The following parameters, such as: hydraulic fluid compressibility, nozzle or control 
surface flexibility, backup structure stiffness, Coulomb/ Dahl friction at gimbal, load inertia, play 
critical role in the control system analysis, and they are usually captured in a separate actuator model, 
preferably non-linear.  
 
To properly model the tail-wags-dog and load-torque feedback dynamics a dedicated actuator model is 
required for every control surface hinge or gimbaling engine which is included in the vehicle model. 
The actuator model is more than just a simple transfer function, but it has two inputs: a deflection δ-
command and an external load-torque input. It also has three outputs: engine or surface deflection, rate 
and acceleration. The actuator inputs and outputs couple with the vehicle model to implement the 
TWD and load-torque dynamics, as shown in Figure (2.8.1), which is similar to both: aero surfaces and 
TVC engines. An actuator models similar to those described in Section 4 are used to drive each 
effector, and they are applicable to both: TVC engines or aero-surfaces, but the actuator parameters 
may be different. Notice, that when the engines and aero-surfaces are implemented as separate bodies 
interacting with the vehicle, their masses and moments of inertia should not be included in the vehicle 
mass, moments of inertia, and CG calculations. 
 
Control Issues 
 
Feedback from the IMU, the rate gyros, the accelerometers, or the vane sensors is used to control the 
vehicle attitude and flight direction. Feedback from the accelerometers or vanes is often used for 
“load-relief” in order to reduce the normal and lateral aerodynamic loading on the structure, especially 
in launch vehicles at high dynamic pressures. Normal acceleration feedback is also used to control the 
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rate of descent in a re-entry vehicle. The equations also include variations in altitude and in velocity 
(δV, δh) outputs which characterize the phugoid dynamics. These variables are used for feedback 
design and the implementation of longitudinal guidance laws in aircraft or re-entry vehicles flying at 
high angles of attack, and using speed-brake, variable thrust, or alpha control as means to regulate the 
speed and altitude. Cross-range velocity is also included in the equations and it is used for lateral 
guidance. There are situations where some of the states and outputs are not required in the dynamic 
model and they should be taken out in order to minimize the state-vector. For example, the (δV, δh) 
states are not useful in a launch vehicle with a fixed thrust and flying at zero (α). The x-acceleration 
output is also not needed because it cannot be controlled from a TVC input. It is a good practice to 
reduce the vehicle model by removing the non-contributing state-variables, especially when creating 
models for control synthesis, because most design algorithms require minimal state-space realizations. 
 
Modeling Issues 
 
When the TWD/ load-torque dynamics are included, the flight vehicle model must be created with the 
TWD/ load-torque option turned-on. There is a flag in the vehicle input data that turns this option "on". 
In this case the vehicle model provides “load-torque” outputs and gimbal acceleration inputs for every 
engine direction and for every control surface. These inputs and outputs couple the vehicle model with 
the actuators as shown in Figure (2.8.1). The hinge moment and the tail-wag-dog equations for aircraft 
control surfaces are similar to the load-torques and the tail-wag-dog equations for the TVC engines. 
The inputs to the vehicle model consist of: surface deflection, rate, and acceleration for every aero-
surface. An actuator model, such as the ones described in section 4, can be used to drive each aero-
surface. The same actuator models can be used for either, TVC engines or control surfaces. The input 
parameters are different.  The actuator outputs consist of: surface deflections in (radians), rates, and 
angular accelerations in (rad/sec2). Notice that, when the TWD option is turned off, the engines and the 
control surfaces are not treated as externally coupling bodies, and therefore, their masses and moments 
of inertia should be included the vehicle total mass and moments of inertia calculations. The actuators 
also do not need the extra inputs and outputs for TWD modeling, and they can be simplified to transfer 
functions “δ(s)/δcom(s)”. 
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Figure 2.1a Vehicle Axes and Directions of the Aerodynamic Forces and Moments 
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Figure 2.1b Vehicle Axes and Gimbal Directions 
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Nomenclature 
 
Symbol Description 
Ax  Ay  Az Sensed vehicle nominal accelerations along x, y and z axes (ft/sec2) 
Uo, Vo, Wo Nominal vehicle inertial velocities along x, y, and z axes (ft/sec) 
Po, Qo, Ro Nominal vehicle rates about x, y, and z axes (rad/sec) 
Φo  Θo  Ψo Euler Angles (roll, pitch, and yaw) (radians) 
ug   vg   wg Wind-gust velocity components along vehicle  x, y, and z axes (feet/sec) 
Ixx  Iyy  Izz Vehicle Moments of Inertia about the vehicle CG  (ft-lb-sec2) 
Ixy  Ixz  Iyz Vehicle Products Inertia about the vehicle CG  (ft-lb-sec2) 
δya(k)  δza(k) Engine (k) Pitch and Yaw gimbal rotations from trim due to actuator   
  deflections alone (excluding bending) (radians) 
δye(k)  δze(k) Engine (k) total deflections about y and z axes respectively (due to actuator  
  deflection including bending) (radians) 
ΔY(k)   ΔZ(k) Engine or thruster (k) nozzle pitch and yaw trim angles (elevation and azimuth  
  angles measured from the vehicle -x axis) (radians) 
δcs(k)    Rigid deflection at surface (k) due to actuator rotation (rad) 
δfcs(k)    Total deflection at surface (k) about the hinge (includes rotation due to structure  
  flexibility) (rad) 
TLyk   TLzk Pitch and Yaw Load-Torques at Engine (k) Gimbal  (ft-lb) 
Lhs(k)  Moment Arm from hinge line to control surface CG, (Xsk-Xsk cg) (feet) 
lek  Distance from engine gimbal to engine CG, (Xek-Xecgk) (feet) 
lxek   lyek  lzek Distance from vehicle CG to engine (k) gimbal along x, y, and z (feet) 
Mv  Mass of the vehicle (Engines and Slosh Masses Excluded) (lb-sec2/ft) 
msi  Slosh Mass (i) (slug) 
lsxi   lsyi  lszi Slosh Mass (i) distance from the vehicle CG (along x, y and z) (feet) 
mek  Mass of Engine (k) (slug) 
Tek  Thrust of Engine (k) (lb) 
δTek  Change in Engine (k) thrust from its nominal value (lb) 
Xcg  Ycg  Zcg Location of the Vehicle Center of Gravity (ft) 
Xek  Yek  Zek Location of Engine (k) Gimbal (ft) 
Xgi  Ygi  Zgi Location of Gyro (i) (ft) 
Xai  Yai  Zai Location of Accelerometer (i) (ft) 
Xsi  Ysi  Zsi Location of the Slosh Mass (i)   (ft) 
φ,  θ,  ψ Small changes in vehicle attitude from nominal (roll, pitch, yaw) (radians) 
p,  q,   r Changes in vehicle body rates (radian/sec) 
α   ß  Changes in the angles of attack and sideslip (radians) 
Czα  Cyß Normal and Side Force Aero Derivatives due to α and ß (1/deg) 
Cmα  Clß  Cnß   Aerodynamic Moment Derivatives (1/deg) 
Cmq  Cnp  Clp  Aerodynamic Moment Velocity Derivatives (-) 
Cnr   Clr Aerodynamic Moment Velocity Derivatives (-) 
Czδsi Cyδsi Normal and Side Force Aero Derivatives due to Control Surface Deflections δasi 
  (1/deg) 
Cmδi Clδi Cnδi Aero Moment Derivatives due to control surface δsi (1/deg) 
Sref  Vehicle Reference Area (feet2) 
lch , lsp  Mean Aerodynamic Chord and Span Vehicle Reference Lengths (feet) 
φhs , λhs  Control Surface Hinge Line Orientation Angles (deg) 
Q-bar  Dynamic Pressure (lb/ft2) 



13 
 

ηj  Generalized Modal Displacement of a mode (j) (feet) 
Mg(j)  Generalized mass for mode (j)  (lb-sec2/ft) 
φyek(j), φzek(j) Mode (j) Shapes along y and z axes, at engine (k) gimbal (ft/ft) 
σyek(j), σzek(j) Mode (j) Slopes about y and z axes, at engine (k) gimbal (rad/ft) 
φysi(j), φzsi(j) Mode (j) Shapes along y and z  at slosh mass (i) location (ft/ft) 
φyai(j), φzai(j) Mode (j) Shapes along y and z,  at accelerometer (i) (ft/ft) 
σhsk (j)  Modal slope for mode (j) at surface (k) about the hinge vector (rad/ft) 
σygi(j), σzgi(j) Modal slope for mode (j) about the y and z axes, at gyro (i) location (rad/ft) 
Mhs (k)  Hinge Moment about the hinge vector of surface (k) (ft-lb) 
Cηjα  Cηjβ  Generalized modal force stability derivatives of mode (j) with respect to (α, β)  
  (1/radian) 
Cηjp  Cηjq  Cηjr Generalized modal force stability derivatives of mode (j) with respect to (p,  
  q, and r)  (1/rad/sec) 
Cηj δk    Generalized modal force stability derivatives of mode (j) with respect to a control  
  surface (k) deflection (1/rad) 
Cηj ηi  Generalized modal force stability derivatives of mode (j) with respect to a   
  generalized modal displacement ηi of mode (i) (1/ft) 
Chi α  Chi β Hinge moment derivative at control surface (i) due to α and β variations    
  respectively  (1/rad) 
Chi δk  Hinge moment derivative at control surface (i) due to surface (k) deflection 
  (1/rad) 
Chi ηj  Hinge moment derivative at control surface (i) due to generalized modal   
  displacement ηj of mode (j) (1/ft) 
Clηj Cmηj Cn ηj Roll, pitch, and yaw moment derivatives with respect to modal displacement ηj of  
  mode (j) (1/ft) 
CYηj  CZηj Force derivatives along Y and Z axes with respect to modal displacement ηj of  
  mode (j) (1/ft) 
Naer  Number of Aero Surfaces 
Nmod  Number of Bending Modes 
Neng  Number or Engines 
Nsl  Number of Slosh Masses 
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Figure 2.2 Flight Vehicle Reference Axes 
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2.1 Force and Acceleration Equations 
 
The combined external forces applied on the vehicle consist of the following types: aerodynamic, 
engine (TVC) forces, propellant sloshing, wind gust disturbance, and gravity forces. Although slosh is 
an internal force we treat it as external in this case because it is implemented as separate body that 
exerts forces on the vehicle. 
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    (2.1.1) 

 
The vehicle acceleration measured at the CG is the result of all forces, either external or internal, with 
the exception of gravity and centripetal forces. That is because accelerometers do not “feel” the gravity 
force. The accelerations measured by an accelerometer at the CG are described by the “F=ma” type of 
equation 2.1.2.  
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    (2.1.2) 

 
Note that, MT represents the total vehicle mass including the slosh masses, gimbaling engines, and 
aero-surfaces. MV represents the vehicle mass that excludes the moving masses (slosh, engines, and 
aero-surfaces), because in the y and z directions the moving masses are implemented as separate 
bodies interacting with the vehicle through forces. The difference between the inertial accelerations 
(AXI, AYI, AZI) and the accelerations measured by an accelerometer at the CG (AX, AY, AZ) is the 
gravity acceleration components:  
A A g
A A g
A A g

XI X

YI Y

ZI Z

= −
= +
= +

sin
cos sin
cos cos

Θ
Θ Φ
Θ Φ

       (2.1.3) 

 
When the TWD dynamics are included in the model, the masses of the engines and the control surfaces 
should not be included in the calculation of vehicle mass properties, CG, or moments of inertia 
calculations. The tail-wags-dog equations generate reaction forces and moments on the vehicle due to 
the rotational accelerations of the engines or the control surfaces about the hinge. The effects of the 
swiveling masses are included by the forces and torques in the equations of motion.  
 
Otherwise, if the TWD dynamics is not used, the vehicle mass (MT), the CG, and the moments of 
inertia should include the masses of the engines and the control surfaces. Also, if an engine is defined 
as “fixed”, that is, “Throttling” and not “Gimbaling”, such as, for a reaction control jet that is not 
gimbaling, but fixed and throttling, then the TWD option is not introduced in the dynamic model and 
the engine masses should be included in the vehicle mass properties calculation. 
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Accelerations due to External Forces 
 
The acceleration of a rotating vehicle in the body frame that has a rotational rate ωb is defined by 
equation 2.1.4a. 

v v
F

Mb
i

V

+ × = ∑ω          (2.1.4a) 

 
Where: MV is the vehicle mass and Fi is the external forces. This equation is resolved along the 3 body 
axes to calculate accelerations along x, y, z, as shown in Equation 2.1.4b, where P, Q, and R are the 
body rates. 
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        (2.1.4b) 

 
The left side of the equations represents the rate of change of linear momentum. The right side shows 
the summations: ΣFx  ΣFy  ΣFz of all external forces including gravity. The vehicle velocities U, V, W, 
along the body axes are obtained by integrating Equations 2.1.4b. The velocity components U, V, and 
W, along the body x, y, and z axes are also related to the angles of attack and sideslip as shown in 
Equation 2.1.5, where V0 is the total vehicle velocity along the flight path.  
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Where: α and β are the aerodynamic angles of attack and sideslip. After substituting U, V, and W from 
equations 2.1.4b in 2.1.5, the acceleration equations become: 
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Equation (2.1.6) Nominal acceleration equations as a function of external forces and body rates 
 
Variations in the external forces δFx, δFy, δFz along the vehicle x, y, and z axes respectively produce 
variations in vehicle acceleration (𝑢̇𝑢, 𝑣𝑣, 𝑤̇𝑤̇ ), as shown in equations 2.1.7. Equations 2.1.7 calculate also 
the changes in the angles of attack and sideslip and the change in vehicle velocity δV as a function of 
the external forces. Note that, δV represents the change in velocity along the velocity vector V0. 
Equations 2.1.7 are obtained by linearizing the non-linear equations 2.1.6, and substituting (w and v) 
with (α and β) respectively from equations 2.1.8.  
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Equation (2.1.7) Changes in vehicle accelerations due to external force variations 
 
Small changes in the velocities along z and y (w and v) create variations in the angles of attack and 
sideslip α and β relative to the trim angles α0 and β0 respectively, as shown in Equations 2.1.8. 
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Linear Accelerations at the Engine Gimbals 
 
The translational accelerations at the TVC engine gimbals are used in the load-torque calculations. 
They include the effects of the vehicle rotations plus bending. The accelerations at the kth gimbal 
consist of the following three terms: 
  

(a) Linear acceleration at the CG 
(b) Contributions due to the vehicle angular acceleration, and  
(c) Translational acceleration components due to structural flexibility at the gimbals.   
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Where:  
φxe(k,j)  is the modal shape along x of mode (j) at the engine (k) location 
η(j)  is the modal displacement for mode (j) 
lXek, lYek, are the moment arms between an engine (k) and the vehicle CG 
lZek  in the x, y, and z directions respectively, lZek= Ze(k) - ZCG 
 
 
Linear Accelerations at the Control Surface Hinges 
 
Similarly, the acceleration along x, y, and z, at the mid-point of the kth control surface hinge line is 
calculated from equation 2.1.10. The accelerations at the control surfaces are used in the hinge moment 
equations. 
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The moment arm distances between the center of an aerosurface kth hinge line and the vehicle CG are 
defined in the following equations: 
l X X  l Y Y  l Z ZXSk Sk CG YSk Sk CG ZSk Sk CG= − = − = −   (2.1.11) 
 
 
  



19 
 

2.2 Moment and Angular Acceleration Equations 
 
The vehicle roll, pitch, and yaw body rates (P, Q, R) about its center of mass are obtained by 
integrating the non-linear rate of change of angular momentum equations 2.2.1. 
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Where: ΣLX,  ΣMY, and ΣNZ  are the total externally applied (roll, pitch, and yaw) torques. They are 
due to aerodynamics, TVC forces, propellant sloshing, and external disturbances. The moments and 
products of inertia and the vehicle CG are calculated without the slosh masses and the gimbaling 
engines in the mass properties, because their presence in the vehicle equations is taken care by the 
slosh and the tail-wag-dog forces which are treated as separate bodies. 
 
Equations 2.2.2 are derived by linearizing equations 2.2.1 at trim flight condition. They calculate 
variations in body rates (p, q, r) about its center of mass relative to the vehicle nominal rates (P0, Q0, 
R0) as a function of variations in the externally applied (roll, pitch, and yaw) torques: ΣLx,  ΣMy, and 
ΣNz.  
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The combined external torques: ΣLx,  ΣMy, and ΣNz in equations 2.2.2 are due to variations in engine 
TVC forces, jet firing, aerodynamic forces, wind gust disturbances, sloshing, etc. as shown in Equation 
2.2.3. 
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The moment equations may be dynamically coupled together. The pitch axis is usually decoupled from 
the lateral axes, and the coupling is almost negligible in cylindrical boosters. Aircraft and rocket-plane 
type of vehicles, such as the Space Shuttle and most atmospheric vehicles have a significant amount of 
coupling between the roll and yaw axes due to the Ixz product of inertia term and also due to the 
aerodynamic coefficients Clβ, Cnβ, etc. Coupling between all three: roll, pitch, and yaw moment axes 
can occur, mainly due to the products of inertia, steady vehicle rates (P0, Q0, R0), CG offsets, lack of 
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symmetry in the aerodynamic coefficients, and asymmetric TVC forces. It can also happen when an 
aircraft is flying at constant bank angle Φ0 and sideslip β0, or when a rocket vehicle is experiencing a 
steady sideslip angle β0 due to cross-wind or because of the loss of thrust in an off-centered engine. 
Therefore, in the equations of motion we are not ignoring the cross-coupling terms between axes. 
 
2.3 Gravitational Forces  
 
The earth gravity force acting on the vehicle CG can be resolved along the body x, y, and z axes as a 
function of the pitch and roll Euler angles relative to the local horizontal axes. 
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The gravity acceleration constant (g) varies with altitude. The (g) equation also takes into 
consideration the orbital effect due to the vehicle velocity V0 which causes a centripetal force, where: 
(go) is the gravity constant at the earth’s surface. By applying small variations in equation 2.3.1, we 
obtain the following equation 2.3.2 which calculates variations in gravity forces as a function of 
variations in (α, δh, θ, φ, δV). 
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Equation (2.3.2) Variations in Gravity Forces 
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Where: 
 
Re   is the radius of the earth 
h0   is the vehicle altitude from sea level 
V0   is the vehicle horizontal velocity 
α0, α  are the nominal angle of attack and its variation from nominal 
Φ0, Θ0  are the nominal vehicle roll and pitch Euler angles 
φ,  θ  are the attitude variation angles in roll and pitch  
g, g0  is the nominal gravity acceleration, and at zero altitude 
 
2.4 Engine Forces and Moments due to Gimbaling and Throttling 

 
The attitude and direction of a rocket vehicle is controlled 
either by gimbaling the thrust vector control (TVC) engines, 
or by varying the thrust of the engines (throttling), or both. In 
our models the TVC nozzles are attached to the vehicle by 
means of spherical pivots that allow them to pivot in two 
directions. By deflecting the engine nozzles the TVC 
generates force variations at the gimbals perpendicular to the 
vehicle direction that are used to guide and stabilize the 
vehicle. Typically, two orthogonal actuators per engine are 
used to provide the forces needed to rotate the nozzle in pitch 
δy and in yaw δz directions. The max gimbal angles in typical 
launch vehicles may vary between ±5º and ±10º. The vehicle 
velocity can be controlled by varying the engine thrust. 

 
Engine Forces at the Gimbals 
 
A typical engine nozzle (k) with a nominal thrust (Tek) is not necessarily aligned with the vehicle x 
axis, but it is tilted in pitch and yaw at angles ∆E and ∆Z respectively, see Figure 2.4.4. This non-zero 
position is either due to intentional mounting of the nozzle, scheduling, or trimming, as the engines 
rotate in order to balance the aerodynamic moments. ΔE is the elevation angle which is between the 
nozzle thrust direction and the vehicle x-y plane, and it is positive down. ΔZ is the yaw rotation angle 
of the nozzle and the thrust vector at the gimbal. It is the rotation angle of the thrust vector projection 
in the x-y plane about the z-axis, measured from to the -x direction. 
 
Total Deflection at an Engine Gimbal 
 
The engine nozzles deflect further from their trim positions (∆E and ∆Z) by some smaller angles (δye and 
δze) in pitch and yaw, in order to guide the vehicle and to stabilize it against aero disturbances. They 
may also vary their thrust from nominal. The additional deflections and thrust variations generate force 
variations at the engine gimbals. The forces which are perpendicular to the flight direction control 
attitude and flight path, and the thrust variations control the vehicle speed. 
 
The actuators provide the forces required to rotate the nozzles in pitch and in yaw (δya and δza) from 
trim (∆E and ∆Z). The intended deflections, however, are corrupted by flexibility of the structure at the 
engine gimbal, and the total deflections of the nozzle in pitch and yaw consist of two components: the 
rotation of the nozzle about its gimbal as a result of the actuator displacement, and an additional 
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deflection resulting from the elastic deformation of the vehicle structure at the gimbal, equation (2.4.2), 
where: (σyek σzek) are the pitch and yaw modal slopes at the engine (k) gimbal. The pitch engine 
deflection δyek is measured with respect to the trim position ∆Ek and along the same direction. When 
∆Zk is zero, the pitch deflection δyek is exactly in the pitch direction. Figure 2.4.6 illustrates the total 
nozzle deflection at the pivot, consisting of two rotational components: a component due to the nozzle 
rotation relative to the gimbal, plus a component due to structural deformation at the gimbal as 
described in equation (2.4.2).  
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Equation 2.4.2 Total Nozzle deflection is due to rotation at the gimbal plus structure deformation 
 
The relative rotation, rate, and acceleration at the gimbals are calculated from separate actuator models 
for each TVC rotation. The total deflection and acceleration at the gimbal term must include the 
structural deformation component calculated from the modes as in equation (2.4.2). The gimbal forces, 
therefore, contain undesirable low-damped oscillatory components due to structural flexibility at the 
gimbals. 
 
Forces at the Engine Gimbals 
 
Each engine at its trimmed position generates a force vector on the vehicle that can be resolved in three 
components FXE(k), FYE(k), and FZE(k) along the vehicle body axes. Equations 2.4.1 calculate the trim 
forces along x, y, and z, at an engine (k) gimbal as a function of thrust and the trim angles (∆Ek and 
∆Zk). These are the steady-state forces that accelerate the vehicle and balance the steady aerodynamic 
moments.  
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Equation (2.4.3) calculates the force variations: δFxek, δFyek, and δFzek at the engine gimbal due to 
pivoting relative to the trim angles (∆Ek and ∆Zk) and throttling about nominal thrust Tek. It is derived 
from equation (2.4.1) by replacing the nozzle trim angles (ΔE and ΔZ)  by (ΔE+δy) and (ΔZ+δz), and the 
thrust Tek  with (Tek+δTek) and solving for variations. They consist of four parts: 
 

• Forces due to small pitch engine deflections (δyek) from trim 
• Forces due to small yaw engine deflections (δzek) from trim about the local z-axis 
• Force variation due to engine thrust variations (±δTek) relative to nominal thrust (Tek), and 
• Tail-wag-dog forces caused by angular accelerations of the engine nozzles.  
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  (2.4.3) 

For a thrust varying engine, the ratio of thrust variation divided by the nominal engine thrust (δTek/Tek) 
is defined to be the throttle control input δThr(k). The maximum throttle control indicates the maximum 
amount of thrust variation that the engine is capable of providing, above and below nominal thrust. A 
positive value for δThr indicates a thrust increase from the nominal thrust. A negative value indicates a 
thrust reduction from nominal. For example, if the thrust of an engine can be made to vary from 80 
pounds to 120 pounds by means of a throttle control valve, the thrust variation in the equations should 
be represented by a nominal thrust Tek=100 pounds and a throttle control input δThr(k)=(± 0.2). In order 
to avoid confusion in Flixan, the maximum throttling capability of each engine is taken into 
consideration and the program automatically scales the model so that each input is expected to assume 
values between +1 and -1. In this example, an input of +1 corresponds to the max thrust of 120 (lb), 
zero corresponds to the nominal thrust of 100 (lb), and -1 corresponds to the minimum thrust of 80 
(lb). Inputs of magnitude greater than one would violate the engine throttling specs. 
 
On-off RCS jets can be modeled similar to the thrust varying engines using Equations (2.4.3). In the 
case of an "on/off" RCS jet capable of producing either zero or 100 lb of thrust, we can model this 
thruster as having a nominal thrust equal to zero and a max thrust equal to 100 pounds, in which case, 
the normalized throttle control input δThr(k) in the vehicle model must be either: 0 or +1. This model 
can also be used to represent a pair of reaction control jets (ex. 100 pounds each) mounted back-to-
back in the same location with their nozzles in the opposite directions producing a thrust between zero 
and ±100 pounds. In this case the throttle control input δThr(k) in the normalized system can assume 
three distinct values {-1,  0, and +1} to represent the three extreme thrust values. Differential throttling 
of propulsion engines for attitude control can be used in vehicles that have the engines located with big 
enough moment arms from the vehicle CG. In simulations, the throttle control inputs δThr(k) in the 
vehicle model are received from a jet selection logic that generates throttle control signals. They must 
be normalized and limited to values which are less than one in magnitude, otherwise, they would be 
off-limits.  
 
The last term in equations 2.4.3 represent the reaction forces at the gimbal due to the angular 
acceleration of the engine nozzle about the pivot. This term creates the “tail-wags-dog” dynamics. We 
assume that the engine nozzles are rigid and when they rotate, they generate reaction forces against the 
vehicle at the gimbals. The TWD terms consist of two components: the angular acceleration of the 
nozzle relative to the gimbal and the acceleration of the structure around the gimbal. The TWD terms 
create a pair of zeros in the transfer function. The location of the zeros in the complex s-plane depends 
on the sign of the nozzle moment arm (lek), which is the distance of the nozzle's center of mass from its 
pivot. A typical engine nozzle has its center of mass further back from the pivot point (lek > 0), and the 
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TWD zeros create a complex pair along the (jω) axis. If the moment arm is negative (nozzle mass 
center is above gimbal) the zeros are along the real axis.  
 
Total Engine Forces 
 
The total TVC forces which are applied on the vehicle along x, y, and z, are the forces which maneuver 
the vehicle around, and they are obtained by combining the individual engines. The engine forces are 
combined to calculate the total vehicle force and moment variations due to the combined TVC. Note, 
that when the inertial coupling coefficients (he) are not included in the flex equations, the gimbal 
accelerations (pitch and yaw) should include the flexibility components as shown in equations (2.4.2). 
Otherwise, when they are included, the gimbal accelerations in equations (2.4.3) should not include the 
flex acceleration terms because the coupling of the vehicle structure with the gimbal accelerations is 
captured by the inertial coupling coefficients which are provided by the FEM. The combined TVC 
forces from all engines along the x, y, and z axes consist of the summation of the components from 
each individual engine as shown in equation (2.4.5). Figure (2.4.6) illustrates the total deflection of an 
engine at the gimbal as described in equation (2.4.2). 
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Figure (2.4.4) Engine Nozzle Orientation Angles with respect to the Vehicle
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Figure (2.4.6) Total Engine Deflections Consists of Rigid plus Flex Components 
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Moments due to Engine TVC Forces 
 
Equations (2.4.7) calculate the roll, pitch, and yaw TVC moments on the vehicle generated by the force 
variations at the gimbals Equations (2.4.3), from all engines combined. The equations also include the 
reaction forces and moments created by the nozzle accelerations. 
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Equation (2.4.7) Vehicle Moments due to Combined TVC Forces 
 
The first two terms in equations (2.4.7) consist of the cross-products between x, y, z engine forces 
times the moment arms from the vehicle CG to the engine gimbals. The third terms in the pitch and 
yaw equations are TWD torques due to engine rotational accelerations. The fourth term represents the 
moment caused by an engine that has its center of mass displaced due to gimbal rotation (δye, δze) and 
coupling with the vehicle acceleration (Ax). The fifth term in the pitch and yaw equations represents 
the moment variation caused by an engine thrust that has its application point displaced from its 
nominal position due to normal or lateral flex displacement at the gimbal. The sixth term is the 
additional moment due to the flex displacement at the gimbal coupling with the vehicle acceleration 
(Ax). The relationship between the inertial and the sensed accelerations is shown in equation (2.1.3). 
 
The engine forces {Fxe(k), Fye(k), Fze(k)} are calculated in equation (2.4.3) and, as it was previously 
discussed, the implementation of the force equation depends on whether or not the inertial coupling 
coefficients (he) are included in the bending equations. When they are not available, the pitch and yaw 
gimbal accelerations are calculated with flexibility included as shown in equations (2.4.2). Otherwise, 
only the rigid component of the gimbal acceleration is used because the flex coupling effect is 
introduced by the inertial coupling coefficients (he) in the bending equation. The moment arms 
between the engine (k) gimbal and the vehicle CG are defined by the following equations: 
l X X  l Y Y  l Z Zxek ek CG yek ek CG zek ek CG= − = − = −  
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2.5 Aerodynamic Forces and Moments 
 
The aerodynamic forces and moments which are applied on the flight vehicle as it flies through the 
atmosphere are based on an aerodynamic model that calculates the forces along the x, y, and z body 
axes, and also the moments, as a function of the Mach number, the angles of attack and sideslip, the 
body rates, and surface deflections. The aerodynamic model consists of a set of coefficients for the 
base vehicle, plus increment coefficients for each aerosurface. The aerodynamic forces along the x, y, 
and z axes are defined in equations 2.5.1, and the aerodynamic moments in equations 2.5.2. They are 
used in 6-dof simulations and not for linear analysis. They calculate the base forces and moments 
which are functions of Mach number and the angles of attack and sideslip relative to the airflow. They 
also include forces and moments generated by the control surfaces combined. The basic aerodynamic 
coefficients are (CA, CY, CZ, Cl, Cm, and Cn). They are non-dimensional and vary as a function of Mach 
number and the angles of attack and sideslip. The equations include damping terms which are 
functions of body rates and damping derivative coefficients. The coefficients are obtained from wind-
tunnel tests, or analytically from CFD models. The vehicle "feels" the presence of a wind-shear or a 
gust in the equations by the changes that it produces in the angles of attack and sideslip (αw, βw) and 
also in the velocity Vw relative to the airflow, because those variables are affected by variations in the 
wind velocity, see figures (2.9.1- 2.9.3). The equations also include damping terms which are functions 
of body rates and damping derivative coefficients. The damping coefficients vary with Mach and 
alpha. In 6-DOF simulations the coefficients are stored in multi-dimensional look-up matrix tables and 
are interpolated. 
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Equation (2.5.1) Aerodynamic Forces on the Vehicle 
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Figure (2.5.2) Aerodynamic Moments on the Vehicle 
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Equations 2.5.3 calculate the additional forces on the vehicle FXcs(k), FYcs(k), FZcs(k), and the moments 
LXcs(k), MYcs(k), NZcs(k) generated by the deflection and acceleration of an aerosurface (k). The 
aerosurface aerodynamic coefficients are functions of four variables: Mach number, angles of attack 
and sideslip relative to the airflow, and control surface increment from zero position δs. There are also 
damping terms due to the aerosurface rate sδ . The equations also include "tail-wag-dog" forces 
generated at the hinges due to the aerosurface accelerations. In 6-dof simulations the coefficients are 
stored in four-dimensional look-up matrices and interpolated. 
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Figure (2.5.3) Forces and Moments on the Vehicle Created by the Deflection and Acceleration of a Surface (k) 
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Linearized Equations 
 
Equations 2.5.4 are used in linear control analysis, and they calculate the variations in the aerodynamic 
trim forces from steady-state, as a function of variations in vehicle variables, structural elasticity, and 
aero-surface forces. They are derived by linearizing equations 2.5.1. The angles of attack and sideslip 
(αw, βw) describe variations from trim (α0, β0) and they include the effects due to wind velocity 
disturbance, as shown in Section 2.9. The change in vehicle velocity (δVw) includes also the effect due 
to the wind velocity. The variables wgust and vgust are the wind gust velocity components relative to the 
vehicle in the z and y directions respectively. The forces FXs(k), FYs(k), and FZs(k) in this case 
represent additional forces due to an aerosurface (k) deflection and they are defined in equation 2.5.5. 
The coefficients CZηj,  CYηj etc. are aero-elastic coefficients that define variations in the aerodynamic 
forces along the y and z axes due to the generalized modal displacements (ηj) and their derivatives. 
They define, for example, the normal force variations on a flexible wing as a result of structural wing 
oscillations.  
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Equation (2.5.4) Variations in Aerodynamic Forces along X, Y, and Z 
 
Forces Generated by a Control Surface 
 
In the equations that follow each aerosurface is considered to be a separate control input. Each rotating 
panel must be defined as a separate panel and not a combination of aerosurfaces, such as an aileron 
which is the differential deflection of two flaps, or an elevon that is the average deflection of two flaps. 
The transformation from roll, pitch, and yaw flight control demands to the individual panel deflections 
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is defined by the mixing-logic matrix and therefore it is not necessary to combine aerosurfaces together 
in the dynamic model. The reason is because it makes it easier to include flexibility and TWD forces at 
the hinges of each aerosurface because each aerosurface generates a separate force and torque on the 
vehicle at a specific location and direction. It is difficult to model the tail-wag-dog forces when the 
aerosurfaces are combined together as a single control input. Because, the forcing functions on the 
vehicle are not only from aerodynamic forces, which are defined by the aero coefficients, but they are 
also affected by tail-wags-dog forces and structural deformations which are specific to each 
aerosurface. This information may become corrupted when you combine aero-surfaces together. Figure 
2.5.3 shows a typical aerosurface (k) rotating about a hinge vector. A positive deflection (+δs) is 
defined to be a clockwise rotation of the panel about its hinge vector. The orientation of the hinge 
vector with respect to the vehicle axes is defined in terms of two angles: 
 

1. The back-sweep angle λhs(k) which is the angle between the hinge vector and the y-z plane that 
slices the vehicle perpendicular to the x axis. In most airplanes the hinge line is perpendicular 
to the vehicle x axis and λhs=0º, or it may be slightly positive. It would be negative on a 
forward-sweep aircraft. 

2. The aerosurface bank angle φhs(k) is defined between the projection line OP of the hinge line on 
the y-z plane and the vehicle x-y plane. For example, a left elevator or flap has φhs=0º, a right 
elevator has φhs=180º, and a rudder has φhs=90°. 

 
Figure (2.5.3) Definition of the Hinge Vector Orientation Angles 
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Other aerosurface parameters that may be necessary to define in addition to the hinge vector 
orientation angles are: the mid-point location of the hinge in vehicle coordinates, and the mass 
properties of each aerosurface such as: mass, moment of inertia about the hinge, and the distance (Lhs) 
between the hinge and surface CG. They are needed for the calculation of the TWD forces. Each 
individual rotating panel must be defined as a separate aerosurface and not as a combination of 
aerosurfaces, unless the TWD, load-torque feedback, and flexibility are not included, in which case it 
does not matter if surfaces are combined. The inputs to the flight vehicle dynamic model are control 
surface deflections in (radians), rates and accelerations for each individual rotating panel as already 
mentioned. They come from the corresponding actuator model. The transformation from roll, pitch, 
and yaw flight control demands to the individual aerosurface deflections is defined by the mixing-logic 
matrix that connects between the flight control system output and the actuator inputs. The derivation of 
the mixing logic matrix is discussed in Section 5. 
 
Figure 2.5.4 is an example of a vehicle that has five control 
surfaces: a body-flap, two flaps, and two rudders that form a 
V-tail. The hinge vectors of the body-flap and the two flaps 
are pointing in the y direction. The hinge lines of the two 
flaps are slightly tilted from the y axis because the wing has a 
small dihedral. The aerosurface bank angle (φhs) is measured 
between the hinge vector and the vehicle x-y plane. The left 
flap has a small bank angle (φhs=+2º) and the right flap has an 
angle (φhs= -2º). The flaps have a small back-sweep angle 
(λhs=5º). The two rudders are tilted more, forming a 45º V-
tail. The hinge vector of the left rudder is pointing towards the vehicle and has a bank angle (φhs=+45º) 
relative to the (x-y) plane. The hinge vector of the right rudder is pointing away from the vehicle and 
has a (φhs= 135º or -45º). Both rudders have a positive back-sweep angle (λhs=10°). 
 

  
  
Figure (2.5.4) Directions of hinge lines on a Lifting-Body aircraft showing the angles (φhs) in the vehicle y-z plane 
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Equation 2.5.5 calculates force variations at the hinge of the kth aero-surface, along the vehicle x, y, 
and z axes, as a function of aerosurface deflection, deflection rate, and angular acceleration. It consists 
of three terms: 
 

1. An aerodynamics force term that calculates the aero force increments along x, y, and z, as a 
function of aerosurface deflection (δs) and the aerosurface coefficients which are functions of: 
Mach, alpha, and beta.  

2. An aerodynamic damping term that calculates the damping force as a function of the damping 
coefficients and the aerosurface rate ( sδ ). The damping coefficients are usually functions of: 
Mach and alpha.  

3. A reaction “tail-wags-dog” force term that is generated by the angular acceleration of the 
control surface and the structural deformation at the hinge.  
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Equation 2.5.5 Forces on the Vehicle due to a Control Surface (k) 
 
Lhs  is the moment arm distance between the hinge line and the control surface CG 
  {Lhs= Xhinge - Xcscg}. It is positive when the surface cg is behind the hinge. 
δs(k)  is a small deflection angle in (radians) of the control surface (k) about its hinge  
  vector, measured from its nominal trim angle. 
Δs(k)  is the nominal trim position angle of the control surface (k) about its hinge line.  
  It is defined in the input data in (deg). 
CYdk , CZdk  are the aero force increments due to surface deflection, defined in (1/deg) 
csk  is the aero chord of surface (k), (part of the aero data) 
msk  is the mass of surface (k) in (slugs) 
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In Equation 2.5.5 the surface acceleration inputs )(ksδ excite the TWD forces at the surface hinges. The 
surface acceleration, however, should also include the rotational acceleration at the hinge caused by the 
deformation of the structure at the hinge, as shown for the deflection in Equation 2.5.6. However, 
when the inertial coupling coefficients are included in the model the cross-coupling between surface 
flexing and structure excitation is captured by the h-parameters in the finite-elements-model and the 
surface acceleration inputs )(ksδ in this case should only include hinge acceleration due to the actuator 
alone without the structural deformation term.  
 
In the absence of the inertial coupling coefficients, on the other hand, the flexibility at the surfaces is 
approximated by assuming that the surfaces themselves are rigid, but the hinges where they are attached to 
have rotational stiffness. In this case, the total surface rotation consists of the rigid deflection due to the 
relative motion at the hinge plus the deformation of the supporting structure at the hinge. In this case, the 
surface acceleration about the hinge vector input )(ksδ  in equation 2.5.5 must be )(kfsδ  which includes the 
structural deformation term as shown in equation 2.5.6. Similarly, the deflection rates and accelerations at the 
control surfaces are calculated as a function of modal rates and accelerations, as in equation 2.5.6. The slope 
σhs at the hinge is determined by the orientation of the control surface hinge vector with respect to 
the vehicle axes, which is defined by the angles (φh and λh).  
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Equation 2.5.6 Total Aero-Surface Deflection at a Hinge (k) 
 
σhs(k,j)  is the modal slope for mode (j) at the kth hinge line, resolved about the hinge  
  vector as shown in Figure 2.5.3. 
 
Aerodynamic Moments 
 
Equations 2.5.7 calculate the variations in the base vehicle aerodynamic moments about roll, pitch, and 
yaw, as a result of variations in the angles of attack and sideslip (αw, ßw), variations in velocity (δVw), 
altitude (δh), vehicle rates (p, q, r), and aerosurface deflections (δsi). Notice that the changes in the 
angles of attack and sideslip and also in velocity include the effects due to the wind-gust as it is 
described in section 2.9. 
 
The terms (ΣLxs(k), ΣMys(k), and ΣNzs(k)) are the combined moments on the vehicle generated by the 
deflections of Nsurf control surfaces, (k=1,Nsurf). The moments due to a single control surface are 
shown in equation 2.5.8. The aerodynamic coupling coefficients Clα, Cmß, and Cnα are zero when the 
vehicle is aerodynamically symmetric. They become significant when the vehicle loses symmetry, 
which increases the dynamic coupling between pitch and lateral. The coefficients Clηj , Cmηj , Cnηj are 
aero-elastic moment derivatives. They define variations in vehicle moments due to the excitation of a 
structural mode (ηj). For example, the flexing of a wing mode causes oscillatory moments on the 
vehicle. The aero-elastic coefficients are obtained by combining fluid aerodynamic models with finite 
element models, and it will be discussed in section 2.7. 
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Equation 2.5.7 Aerodynamic Moment Variations in Roll, Pitch, and Yaw 
_  
Q  Sref   is the dynamic pressure in (lb/ft2), and reference area in (ft2).  
Clß, Cmα, Cnß  are the aerodynamic moment derivatives due to the angles of attack and  
   sideslip, in (1/deg).  
Clδi, Cmδi, Cnδi  are the aerodynamic derivatives for the control aero-surfaces (δsi where  
   i=1,.. Nsurf) in (1/deg). 
lsp and lch   are the wing span and mean aerodynamic chord respectively in (feet). 
Lxs Mys Nzs(k)  are the moments about x, y, and z axes generated by the control surface (k) 
   deflections (δsk). 
 
Vehicle Moments due to Control Surface Deflections 
 
Equations 2.5.8 calculate the roll, pitch, and yaw variations in vehicle moments generated by the 
deflection δs(k) of a control surface (k) from trim position ∆s(k). The orientation of the control surface 
hinge line is with respect to the vehicle axes is defined by the angles φhs(k) and λhs(k), as shown in 
Figure 2.5.3. The aerosurface coefficients Clδ(k), Cmδ(k), etc. are the aerodynamic moment increments 
that generate the aero moment variations due to surface deflection δsk from trim. They are functions of 
Mach, α, and β, for each panel, and are generated from wind tunnel or CFD models. They are 
originally calculated relative to a fixed moment reference center (MRC) point, and they must be 
transformed from the MRC to the vehicle CG using equation 2.5.10. The equations also include 
aerodynamic damping terms that calculate the damping moment as a function of damping coefficients 
and the aerosurface rate sδ . The damping coefficients are usually functions of: Mach and alpha. The 
equations also include tail-wag-dog terms due to the TWD forces from equation 2.5.5 and due to 
aerosurface angular accelerations. There are also terms due to coupling of the vehicle acceleration with 
the normal and lateral displacements of the aerosurface center of mass.  
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Equation 2.5.8 Vehicle Moments (roll, pitch, yaw due to Control Surface (k) deflections 
 
Equations 2.5.9 calculate the displacements dXsk, dYsk, dZsk along x, y, and z of the aero surface center 
of mass and they have two components: a component due to surface rotation δs, and a component due 
to structural deformation at the hinge (η).When the displacements couple with the vehicle AX and AZ 
accelerations they create additional moments on the vehicle. The moment arm lXsk of a control surface 
(k) is the distances between the middle point of its hinge line and the vehicle CG.  
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    (2.5.9) 

 
Cmhδ(k), Cnhδ(k)  are the aerodynamic moment derivatives for the control aero-surfaces (δsk  
   where k=1,.. Nsurf) in (1/deg). They are obtained with respect to the MRC  
   and transformed by the program from the MRC to the vehicle CG. 
FYStwd, FZStwd  are the tail-wag-dog forces at the hinges of the control surfaces as shown  
   in equation (2.5.5) 
ms(k)  & Ihs(k)  are the mass and the Moment of Inertia of Surface (k) about its hinge 
∆s    is the surface trim position with respect to the vehicle x-axis 
 
In equation 2.5.8, the total moment variations generated by a control surface, in addition to the aero 
moments, it includes also moments created by the TWD forces from Equation (2.5.5) due to the 
surface accelerations. Notice, that when the inertial coupling coefficients (hs) of the control surfaces 
are not available, we assume that surface panels are rigid and they are attached on a flexible hinge, and 
the structure is excited by the TWD forces generated by the surface inertial accelerations, which 
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include rotation at the hinge plus deformation of the hinge structure, defined as )(kfsδ  in Equation 
2.5.6. However, when the inertial coupling coefficients are included in the flex modes and in the hinge 
moment equations, only the surface acceleration )(ksδ  relative to the hinge should be used from 
Equation 2.5.6 and not the flex component, because the flex coupling effect is introduced via the h-
parameters. 
 
Transforming the Aerodynamic Moment Coefficients 
 
The aerodynamic moment coefficients CL, CM, and CN, and their derivatives with respect to (α, β, p, q, 
r, η, etc) in Equations (2.5.7) and (2.5.8) are assumed to be defined about the vehicle center of mass. 
However, they are originally calculated relative to a fixed location on the vehicle, called the Moments 
Reference Center (MRC). This is because the CG usually varies during flight and the aero moment 
coefficients, therefore, must be transformed from the MRC to the vehicle CG before they can be used 
in the equations of motion. Flixan automatically performs this transformation using the input data. The 
location of the MRC (XMRC, YMRC, ZMRC) with respect to the vehicle coordinates is defined in the 
aerodynamic data. The following equations are used to transform the aero moment coefficients and the 
derivatives from the MRC to the vehicle center of mass, where (XCG, YCG, ZCG) are the CG 
coordinates. 
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Equation 2.5.10 Aero Moment Transformation Equations from MRC to CG 

 
Figure 1.5.11 Pitch Moment Transformation from MRC to CG 
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The following flight vehicle (mainly aircraft) performance parameters are included for reference. 
 
 
• The aerodynamic center (AC) is the point on the 

vehicle about which the pitching moment 
coefficient remains unchanged, that is, the partial 
of CM with respect to (á) becomes zero.  

 
• The Center of Pressure (CP) is the point where 

the total aerodynamic force acts on the vehicle, 
that is, the point where the moments balance. 

 
• The Static Margin (SM) in terms of percentage 

body length is defined as: 
  
 
Definition of the Aero Coefficients 
 
The coefficients Czα and Cyß are the aerodynamic force derivatives in units of (1/deg). They are used to 
calculate changes in aerodynamic forces due to small variations in the angles of attack and sideslip. 
The coefficients Czδsi and Cyδsi are aerodynamic force increments in units of (1/deg) and they  calculate 
changes in aerodynamic forces due to small deflections of the control surfaces. The aero derivative 
coefficients are defined in units (1/deg) but they are converted internally by the program into units 
(1/rad) because alpha, beta and the surface deflections are calculated in radians. The axial force 
coefficients CAu and CAα calculate the force variation along the x axis due to changes in the velocity 
along the x axis and the angle of attack respectively. They are defined as positive along the negative 
vehicle x axis because they generate drag forces on the vehicle. The cross coupling coefficients CZß , 
CYα and CAß are usually very small and in most cases they can be set to zero. 
 
Force Derivatives: The force derivatives CAα , CZα , and CYβ define variations in vehicle forces along 
the -x, z and y axes respectively due to small changes of angle of attack and sideslip in (radians). They 
are defined as follows 
∂
∂ α

∂
∂ βα β

F Q S C F Q S C etcZ
r Z

Y
r Y= = .  

 
Moment Derivatives: The moment derivatives Cmα, Cnβ, Clβ, etc. define variations in roll, pitch, and 
yaw vehicle moments due to small changes of angle of attack or sideslip in. They are defined by the 
following equations 
∂
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∂
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X
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Force Rate Derivatives: The force rate derivatives CZq, CYr, CYp, etc, define force variations along the 
z and y axes due to variations in the vehicle body rates p, q, r in (radians/sec). They are defined as 
follows 
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Moment Rate Derivatives: The moment rate derivatives Cmq, Cnr, Clp, etc, define variations in roll, 
pitch, and yaw vehicle moments due to variations in vehicle body rates p, q, r in (radians/sec). They are 
defined as follows 
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Velocity Derivatives: The velocity derivatives CAv, and CZv, etc, define the change in vehicle force 
along the negative x axis, and along the z axis respectively due to changes in vehicle velocity in 
(feet/sec). They are defined as follows 
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Steady state Force and Moment Coefficients: The coefficients Cmo, CAo, and CZo, etc, are not 
derivatives. They are aerodynamic force and moment coefficients at the trim condition. They are 
dimension-less, functions of (a, b, and Mach) and they define the nominal forces (FX0, FZ0) and 
moments (My0, Nz0) on the vehicle (not variations), at the trim condition. They are defined by the 
following equations 
M Q S l C L Q S l C F Q S C F Q S CYo r ch mo Xo r sp lo Xo r Ao Zo r Zo= = = − =

 
 
Variations in Dynamic Pressure due to δV and δh: The change in dynamic pressure due to changes 
in vehicle velocity (δV), and the change in dynamic pressure due to changes in altitude (δh) can be 
obtained from the following equations, where h0 is the vehicle altitude and b0 is constant. 
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Velocity Derivatives: The velocity derivatives define the effect of velocity variations (δV) on the 
vehicle forces and moments. They are used in equations (x) and are defined as follows: 
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Altitude Derivatives: They define the effects of altitude variations from nominal on the vehicle forces 
and moments. 
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Angle of Attack Rate Derivatives: The derivatives CZα_dot , CYβ_dot , Cmα_dot define the changes in 
vehicle forces and moments due to variations in the rates of the angles of attack and sideslip. They are 
used in the force and moment equations (2.5.4 and 2.5.7), and are defined as follows: 
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Generalized Aero Force and Moment Derivatives (GAFD): The aero-elastic coefficients are not 
always available. They are included only when the aero/ flex coupling is significant. They are defined 
by the following equations. The generalized aero moment derivatives (Clηj Cmηj Cnηj) define the change 
in vehicle roll, pitch and yaw moments due to variations in the generalized modal displacement η(j) of 
mode (j). Similarly, the generalized aero moment derivatives (Clηj_dot Cmηj_dot Cnηj_dot) define the change 
in vehicle roll, pitch and yaw moments due to variations of the generalized modal rates of a mode (j). 
Where lch and lsp are the vehicle mean aero chord and span reference lengths, and Sref is the vehicle 
reference area. 
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The generalized aero force derivatives define also the variations in vehicle forces along the y and z 
axes due to variations in the modal displacement η(j) and also the displacement rate η(j)-dot of mode (j).  
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The GAFD derivatives (Cηjα Cηjβ Cηjp Cηjq Cηjδs etc.) define the amount of modal excitation η(j) of a 
mode (j) caused by the variations in (α, β, p, q, r, δs) etc, and also their rates. The  reference length 
(lchg) is used to normalize the data, and it may not be the same as the vehicle reference length (lch). 
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The hinge moment derivatives { Chα(k)  Chβ(k)  Chq(k)  Chp(k)  Chr(k) } define how the moments (HMk) at 
the hinge of a control surface (k) vary as a result of variations in vehicle states: (α, β, q, p, r) and the 
derivatives of these states. The hinge moment derivatives Chδ(k,i) define how the moments at the hinge 
of a control surface (k) vary as a result of surface (i) deflections (δsi), and the hinge moment derivatives 
Chη(k,j) define how the moments at the hinge vary as a result of mode (j) generalized displacement (ηj). 
Similarly for the rates of surface deflections and modal displacements. The parameters (ck) and (sk) are 
the chord reference length and the surface area respectively for each control surface (k). The hinge 
moments are defined as follows: 
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2.6 Propellant Sloshing 
 
Propellant tanks in flight vehicles experience disturbance forces due to sloshing. Sloshing is defined to 
be the periodic motion of the free surface of a liquid in a partially filled container. In launch vehicles or 
spacecraft, sloshing can be excited by vehicle motion as a result of control system commands or from 
fluctuations in vehicle acceleration produced by thrust variations, jet firings, or gust disturbances. If 
the liquid is allowed to slosh freely, the uncontrolled oscillations can produce disturbance forces that 
cause additional accelerations on the vehicle. These accelerations are then sensed and responded to by 
the flight control system, forming a closed-loop that can lead to an oscillatory instability. A slosh-
induced instability may lead to a structural failure, premature engine shutdown, or inability of the 
spacecraft to achieve upper-stage engine start through loss of propellant head at the drain port, loss of 
propellant through the vent system, and even loss of the vehicle itself. Even in a low or near zero-
gravity environment, where the slosh frequencies and the torques exerted are low, instability can occur, 
due to coupling with the RCS or TVC, and the liquid motion can build up to amplitudes that may 
damage the vehicle. In general, the slosh frequencies should be greater than the control system 
bandwidth and below the fundamental bending mode frequency. 
 
When a vehicle is accelerating, the motion of the liquid propellant inside the tank can be approximated 
with a spring mass analogy model. We assume that the propellant is separated in two parts:  
 

(a) a solid mass near the bottom of the tank that does not move relative to the tank, and  
(b) a sloshing mass a little below the surface that oscillates relative to the tank. 

 
The weight of the non-sloshing propellant is rigidly attached to the vehicle mass properties at the fixed 
point on the tank centerline and it is included as a point mass in the calculations of the vehicle CG and 
moments of inertia. Note, the moment of inertia of the non-sloshing propellant mass about its center of 
mass is zero because it does not rotate with the vehicle. The sloshing mass is not included in the 
vehicle mass properties calculation because its effect is captured by the forces applied in the dynamic 
model. The sloshing part of the liquid near the surface is approximated with a low-damped spring-mass 
system. The mass, location and frequency are calculated from the properties of the liquid, the shape 
and size of the tank, baffles, and the tank fill level. The sloshing mass is excited by the vehicle normal 
and lateral accelerations and it is free to oscillate in two directions, along y and z, perpendicular to the 
vehicle acceleration vector AT, which is mostly in the x direction but there may also be a small 
acceleration component in the z direction (ignoring the y component). 
 
One side of the spring is attached at a fixed point on the tank centerline a little below the surface, and 
the other end of the spring is attached to a mass that represents the sloshing portion of the propellant. 
The frequency of the slosh oscillation is proportional to the square root of the acceleration AT. The 
slosh frequency is specified at 1g acceleration and scaled up or down by the square-root of the vehicle 
acceleration. The slosh model can also couple with structural flexibility. The attachment point of the 
spring on the tank centerline is not necessarily rigid but it may oscillate due to structural bending. A 
structural node is required at the slosh mass location in order to include flex mode accelerations at the 
attachment point. The combined acceleration at this point excites the sloshing. The opposite also 
happens, that is, slosh forces at the tanks are exciting flexibility. 
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Figure (2.6.1) The slosh mass oscillates in a plane that is perpendicular to the average total acceleration and 
it generates oscillatory forces on the vehicle 
 
The slosh motion is excited by variations in vehicle normal and lateral accelerations at the point where 
the spring is attached to the tank centerline. The slosh mass cannot move along the acceleration vector 
AT, which is the sensed acceleration: (Fthrust-Faero)/MT, but the displacements are perpendicular to AT. 
The displacements of the ith slosh mass, zsi and ysi, are measured relative to the spring attachment point 
at the tank centerline. If we assume that the steady-state AY acceleration is zero, the ysi slosh mass 
displacement is along the vehicle y axis. The zsi slosh displacement, however, is not necessarily along 
the vehicle z axis but it is slightly tilted by an angle χ in the x-z plane, perpendicular to AT, see Figure 
2.6.1.  
  



43 
 

The displacements of the slosh mass in two directions (zs and ys) relative to the tank and perpendicular 
to AT are defined by two low damped 2nd order differential equations 2.6.2. The equations are excited 
by variations in the vehicle normal and lateral accelerations at the slosh mass attachment, 
perpendicular to the acceleration vector AT. 
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Where: 
ωsi , ζsi  are the frequency of the ith slosh mass in (rad/sec) and the damping coefficient. 
axsi , azsi , aysi  are variations in translational accelerations of the vehicle at the ith slosh mass location 

along the x, z and y directions respectively, as defined in equations 2.6.3. 
zsi and ysi  are the displacements of the slosh mass relative to the tank centerline attachment point 

perpendicular to the acceleration AT 
χ  is the angle between the acceleration vector AT and the vehicle x axis 
 
The slosh mass is excited to oscillations by variations in vehicle acceleration at the spring attachment 
point in the tank centerline. The vehicle accelerations along x, y, and z at that point consist of three 
components: (a) the linear accelerations at the vehicle CG, (b) the rotational acceleration components 
due to the vehicle angular accelerations, and (c) flex acceleration components because the tank 
structure is also flexing at the slosh mass attachment, see equation 2.6.3. 
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Where:  
φys(i,j), φzs(i,j) are the modal shapes along y and z of the jth mode at the ith slosh mass location 
η(j)  is the generalized modal displacement for the jth mode 
lXsi, lYsi, lZsi are the moment arms of slosh mass (i) from the vehicle CG in the x, y, and z directions 
  respectively. 

CGsiZsiCGsiYsiCGsiXsi zzlyylxxl −=−=−=  
 
The parameters required to define propellant sloshing in a tank are: the slosh mass msi, slosh frequency 
ωsi in (rad/sec), damping coefficient ζsi, and the steady-state location of the slosh mass relative to the 
vehicle. They can be obtained from the tank geometry, propellant density, surface level, the vehicle 
acceleration, etc. The slosh frequency is defined at 1g acceleration, ωs0 in (rad/sec), and it is scaled 
proportionally with the square root of the steady-state acceleration in (g’s), Tss A0ωω = . 
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The derivation of slosh parameters as a function of tank geometry, propellant level and density, have 
been obtained experimentally and they are documented in NASA reports. Slosh stability is typically 
analyzed in the frequency domain by calculating the phase and gain margins using Nichols or Nyquist 
diagrams. The slosh modes are low damped and they are mostly phase-stable with the bubble 
resonances opening away from the -1 critical point. Sometimes, however, depending on vehicle CG 
and the slosh mass location relative to the vehicle’s center of rotation (CR), the direction of the 
resonance is pointing towards or it is encircling the critical -1 point. This would indicate a reduced 
slosh margin and the possibility of closed-loop slosh instability (divergent oscillations at the slosh 
frequency). In general the slosh modes are phase-stable unless the location of slosh mass happens to be 
between the vehicle CG and the center of rotation (CR). This statement is valid if we ignore the TWD, 
otherwise, it is more complicated to predict the conditions of slosh stability. 
 
The disturbance force on the vehicle generated at the spring attachment point by the oscillating motion 
relative to the tank of a single slosh mass ms(i), can be resolved in three components along the vehicle 
x, y, and z axes, as shown in equation 2.6.4.  
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The combined slosh forces on the vehicle FXsl, FZsl, and FYsl along the x, z and y axes from all tanks 
are: 
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Equation 2.6.6 calculates the moments on the vehicle in roll, pitch, and yaw due to multiple propellants 
sloshing by combining the forces from all tanks. It also includes the moments generated by the 
displacements of the slosh mass coupling with the vehicle acceleration.  
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dsi  is the distance between the vehicle CG and the acceleration vector through the slosh mass, and 

it is calculated in Figure 2.6.8 
AT  is the vehicle total sensed acceleration in the x-z plane 
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Figure (2.6.7) Spring-mass slosh model 
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Figure (2.6.8) Equations for calculating the distance (ds) between the acceleration vector at the slosh mass 
and the vehicle CG. In the above example the acceleration is upward in the vertical direction due to the 
lifting aerodynamic forces counteracting the gravity and the fuel level is horizontal. 
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Non-Linear Pendulum Slosh Model 
 
The spring mass model is useful for linear analysis but when slosh is unstable the linear model is not 
sufficient to evaluate the situation. When unstable, the slosh mass will not diverge to infinity because 
its deflection is limited by the tank radius and, therefore, the force on the vehicle will be bounded. If 
we assume a spherical pendulum analogy where the slosh mass is suspended from a pivot point located 
on the tank centerline, the slosh mass won’t even be able to reach near the tank walls. It will only 
swing up to 45° before the wave breaks and the oscillations will begin growing again from lower 
amplitude. The force on the vehicle is applied at the pivot. Another advantage of the non-linear 
pendulum analogy is that it includes the centripetal forces produced by the angular velocity of the slosh 
mass as it spins around the tank. It allows us to analyze vortex type of dynamic instabilities where the 
mass develops a swirling motion and produces a centripetal disturbance force on the vehicle that 
couples with the TVC control system and further aggravates the spinning. The linear model includes 
only the reaction forces due to the mass acceleration. The non-linear model will show if the instability 
damps out or diverges further. We can analyze vortex type of instabilities in simulations where the 
centripetal forces of the spinning mass couple with the TVC, by giving it an initial lateral spin velocity 
around the tank centerline and observe if it damps out or diverges to large limit-cycles. Figure 2.6.9 
shows the pendulum model relative to tank for an arbitrary 60% fill level. We assume that only 20% of 
the total propellant is sloshing near the top and 40% is rigidly attached near the bottom at its center of 
mass point on the tank centerline. The pendulum string is a little shorter (approx. 3/4) of the tank 
radius, and it is attached at a point on the centerline a little below the sloshing surface. 
 

 
Figure 2.6.9 Pendulum Slosh Model 
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The model is more realistic if we assume that the tank is spherical and that the string is elastic and the 
slosh mass ms is attached from the center of the tank as shown in Figure 2.6.10. This is also equivalent 
to a soft ball rolling inside the lower part of a spherical tank under the influence of the tank 
acceleration forces. This semi-sphere is not necessarily the tank itself but it approximates the region of 
slosh activity near the surface. It is the boundary of the slosh mass position. The mass can float inside 
the sphere and it doesn’t apply a force on the vehicle until it reaches near the surface of the sphere and 
the string stretches rs beyond its nominal length rp which is a little shorter than the tank radius. The 
tank acceleration in the x-direction 𝑥̈𝑥 is equal to the vehicle g acceleration which keeps the mass 
oscillating near the bottom of the sphere. There are also lateral accelerations 𝑦̈𝑦 and 𝑧̈𝑧 produced by 
lateral disturbance forces that excite the pendulum motion. 

 
Figure 2.6.10 Non-Linear Slosh Model 
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The extension of the pendulum string δ is equal to the stretched length rs minus the original unstretched 
length rp. The spring constant of the string ks is a non-linear function of the extension δ. It is adjusted to 
prevent the mass from extending too far beyond the tank wall. 
 

ps rr −=δ     
 
The acceleration at of the vehicle at the location of the slosh mass is: 
 

CGspivscgbst lxldwhereada −+=+×−= :ω    
 
Where:  
ds  is the distance between the slosh mass and the vehicle CG 

bω   is the vehicle angular acceleration 
xs  is the slosh mass position relative to the tank center 
lpiv is the location of the string pivot point 
lcg is the location of the vehicle CG 
acg is the vehicle translational acceleration at the CG. 
 
The pendulum string is elastic and it can be stretched by the vehicle acceleration at the pivot point. Its 
tension Fst in the following equation is produced by forces, consisting of 3 elements: 
  

1. a centripetal force due to angular rate 𝜃̇𝜃 of the mass as it rotates inside the sphere,  
2. a non-linear spring force due to the extension of the string δ as it stretches beyond its length r, 

and 
3. a viscous friction of the string proportional to its extension rate which is along the vector u1 

( ) ( ) ( )11
2 uxkkrmF sdspsst •+++=  δδθδ    

 
Where:  
θ  is the angular rate of the pendulum as it rotates along the tank wall 
ks(δ)  is the spring constant of the pendulum string which is a non-linear function of spring displacement δ; 

2
2

1 ccks += δ . It prevents it from stretching too much beyond the tank wall 
kd1  is the axial damping coefficient of the string along u1 
rp  is the unstretched length of the string, a little shorter than tank radius 

sx  is the slosh mass velocity relative to the tank, resolved along u1 
u1 is the unit vector along the line from the tank center to the slosh mass 

s

s

x
xu =1  
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The inertial acceleration of the slosh mass consists of two acceleration components: the acceleration 
relative to the tank sx plus the inertial acceleration at of the tank at the slosh mass which is close to the 
pivot point. This acceleration is produced by two forces: the axial tension of the string along the u1 
vector, plus viscous friction force against the mass velocity as it rotates around the tank along u2 vector 
and is rubbing against the inside of the tank wall 
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Where:  
kd2  is the tangential damping coefficient of the mass as it slides along the surface creating a force parallel 

to the surface resisting the mass velocity along u2 
u2 is the unit vector parallel to the surface in the velocity direction  
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The force on the vehicle Fv generated by the slosh mass is equal and opposite to the force on the slosh 
mass and the torque on the vehicle is obtained by cross-multiplying Fv with the distance ds of the slosh 
mass from the vehicle CG. 
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The velocity and position of the slosh mass ms with respect to the tank are obtained by integrating the 
slosh mass acceleration starting from known initial velocity and position conditions v0 and p0 
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The slosh mass angular rateθ  is obtained by resolving the slosh mass velocity sx along the u2 direction. 
The pendulum angleθ relative to the tank centerline is obtained from the x-direction component of 
vector u1. 
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Figure 2.6.11 Pendulum Slosh Model Implementation Using Simulink 
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Spherical Pendulum Slosh Model 
 
The spherical pendulum is also non-linear. Propellant sloshing is approximated by a mass suspended 
from a pivot with a non-elastic string of length lp that swings about a center of rotation in two 
directions. The center is the pendulum pivot point and this is where the reaction force is applied on the 
vehicle. The pivot force is generated by the acceleration of the slosh mass and it is in the opposite 
direction. There is an axial component force due to steady vehicle x-acceleration and two lateral forces 
Fy and Fz applied along the vehicle y and z axes. The pendulum motion is excited by the vehicle 
normal and lateral Az and Ay accelerations at the pivot and the pendulum produces the Fy and Fz 
forces which are applied back to the vehicle at the pivot. This is a mechanical feedback that can 
produce instability. The spherical pendulum model can be used to assess the severity of the instability. 
The tank radius bounds the oscillation amplitude and the instability converges to a limit-cycle. The 
amplitude of the oscillations strongly depends on the coefficient of friction of the liquid mass sliding 
along the tank wall. This model can be used to determine the minimum damping coefficient for 
acceptable amplitudes of oscillation. 
 
The string is attached to the tank centerline, a little below the surface and the mass can swing in two 
directions along y and z. The displacement of the mass can be resolved in two rotation angles: a 
vertical rotation angle θ along a longitude, and a horizontal rotation φ about the x-axis along a latitude. 
The pendulum angle θ is measured from the vertical and it is always greater than zero. The angle φ is 
measured counter-clockwise from the projection of lp on the y-z plane. This model is better for launch 
vehicle applications because it is exact and it does not include the extra dynamics of the elastic spring. 
At small θ angles it is identical to the linear spring-mass model. The previous elastic-pendulum model 
is better suited for on-orbit/ low-g applications.  

 
Figure 2.6.12 Spherical Pendulum Slosh Model 
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The pendulum angles are initialized at (θ0 , φ0) and the motion is excited by the accelerations Ay and 
Az of the pivot point along the y and z axes. The acceleration of the pivot relative to the mass can be 
resolved into two acceleration components that produce vertical and lateral moments on the pendulum: 
an axial acceleration Aξ that produces a vertical moment, and a tangential acceleration Aτ that produces 
a lateral moment about the x-axis. So, we have two pendulum moment equations. 
 
Vertical Moment Equation: Equation 2.6.21-22 is the moment for the vertical motion and 
calculates the pendulum angle θ. It is excited on the RHS by the axial component of vehicle 
acceleration Aξ towards the slosh mass which produces the vertical moment. There is also a friction 
force D.Vθ of the mass as it slides with velocity Vθ against along the surface which produces an 
opposing torque, where D is the viscous friction coefficient.   
 
𝑚𝑚𝑚𝑚2𝜃̈𝜃 − 𝑚𝑚𝑙𝑙2𝜙̇𝜙2 cos𝜃𝜃 sin𝜃𝜃 + 𝑚𝑚𝑚𝑚𝐴𝐴X sin𝜃𝜃 = −𝑚𝑚𝑚𝑚𝑚𝑚ξ cos𝜃𝜃 − 𝐷𝐷𝑙𝑙2𝜃̇𝜃 (2.6.21) 

𝜃̈𝜃 = +𝜙̇𝜙2 cos𝜃𝜃 sin𝜃𝜃 − 𝐴𝐴X
𝑙𝑙

sin𝜃𝜃 − 𝐴𝐴ξ
𝑙𝑙

cos𝜃𝜃 − 𝐷𝐷
𝑚𝑚
𝜃̇𝜃    (2.6.22) 

 
For small angles and without any lateral motion this equation reduces to 
𝜃̈𝜃 + 2𝜁𝜁𝜁𝜁𝜃̇𝜃 + 𝜔𝜔2𝜃𝜃 = −𝐴𝐴ξ

𝑙𝑙
        (2.6.23) 

 
Where the oscillation frequency is: 𝜔𝜔2 = 𝐴𝐴X

𝑙𝑙
  and  𝐷𝐷 = 2𝜁𝜁𝜁𝜁 𝑚𝑚 , and ζ is the damping coefficient. 

The D coefficient is selected to produce a ζ =0.01. The pendulum length lp is a little smaller than 
the tank radius. 
 

 
Figure 3.6.13 Top View. The Vehicle Normal and Lateral Accelerations are Resolved into Axial and Tangential 
Relative Accelerations 
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Lateral Moment Equation: In the lateral direction the spin moment about x is given in equation 
2.6.24 which calculates the rotational angle φ about the tank centerline x. It is excited by the 
torque produced by the relative tangential acceleration Aτ between the pivot and the mass, which is 
perpendicular to the Aξ acceleration. There is also a viscous friction force D.Vφ due to the 
horizontal velocity component Vφ producing a negative torque. 
 
𝑚𝑚𝑚𝑚2𝜙̈𝜙 sin2𝜃𝜃 + 2 𝑚𝑚𝑚𝑚2𝜃̇𝜃𝜙̇𝜙  cos𝜃𝜃 sin𝜃𝜃 = +𝑚𝑚𝑚𝑚𝐴𝐴t sin𝜃𝜃 − 𝐷𝐷𝜙̇𝜙𝑙𝑙2 sin2𝜃𝜃  (2.6.24) 
𝜙̈𝜙 = −2 𝜃̇𝜃𝜙̇𝜙  cos𝜃𝜃

sin𝜃𝜃
+ 𝐴𝐴t

𝑙𝑙 sin𝜃𝜃
− 𝐷𝐷

𝑚𝑚
𝜙̇𝜙       (2.6.25) 

 
Slosh Mass Kinematics Relative to Tank Centerline Attachment: 
𝑌𝑌𝑠𝑠 = 𝑙𝑙 sin𝜃𝜃 cos𝜙𝜙  
𝑋𝑋𝑠𝑠 = −𝑙𝑙 cos𝜃𝜃  
𝑍𝑍𝑠𝑠 = −𝑙𝑙 sin𝜃𝜃 sin𝜙𝜙 
 
Slosh Mass Velocities: 
𝑌̇𝑌𝑠𝑠 = +𝑙𝑙𝜃̇𝜃 cos𝜃𝜃 cos𝜙𝜙 −  𝑙𝑙 𝜙̇𝜙 sin𝜃𝜃 sin𝜙𝜙 
𝑍̇𝑍𝑠𝑠 = −𝑙𝑙𝜃̇𝜃 cos𝜃𝜃 sin𝜙𝜙 −  𝑙𝑙 𝜙̇𝜙 sin𝜃𝜃 cos𝜙𝜙 
 
Slosh Mass Accelerations Relative to Tank: 
𝑌̈𝑌𝑠𝑠
𝑙𝑙� = +𝜃̈𝜃 cos𝜃𝜃 cos𝜙𝜙 − 𝜙̈𝜙 sin𝜃𝜃 sin𝜙𝜙  − �𝜃̇𝜃2 + 𝜙̇𝜙2� sin𝜃𝜃 cos𝜙𝜙 − 2𝜃̇𝜃𝜙̇𝜙 cos𝜃𝜃 sin𝜙𝜙 

𝑍̈𝑍𝑠𝑠
𝑙𝑙� = −𝜃̈𝜃 cos𝜃𝜃 sin𝜙𝜙 − 𝜙̈𝜙 sin𝜃𝜃 cos𝜙𝜙 + �𝜃̇𝜃2 + 𝜙̇𝜙2� sin𝜃𝜃 sin𝜙𝜙 − 2𝜃̇𝜃𝜙̇𝜙 cos𝜃𝜃 cos𝜙𝜙 

 
Slosh Forces on the Vehicle: Mass times Inertial Acceleration 
𝐹𝐹𝑌𝑌 = 𝑚𝑚𝑠𝑠�𝑌̈𝑌𝑠𝑠 + 𝐴𝐴𝑌𝑌𝑌𝑌�  
𝐹𝐹𝑍𝑍 = 𝑚𝑚𝑠𝑠�𝑍̈𝑍𝑠𝑠 + 𝐴𝐴𝑍𝑍𝑍𝑍� 
 
Slosh Moments on the Vehicle: 
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2.7 Structural Flexibility  

 
Structural flexibility is a very important factor in flight control system stability and performance and it 
must properly be accounted for in the mathematical model and analysis. Flight vehicles are designed 
with minimum weight objectives, hence their structures exhibit some form of flexibility. Some parts of 
the vehicle can develop considerable amounts of displacement and acceleration as a result of structural 
flexibility in addition to the displacement and acceleration that arise owing to the rigid body motion. 
The primary function of the flight control system is to guide and stabilize the flexible vehicle without 
violating the operational requirements. It processes data from sensors to provide command signals to 
engines, control surfaces and RCS jets. The sensors measure angular or translational motion, which in 
additional to the rigid-body, it includes motion caused by structural deformation at the locations of the 
sensors.  
 
These structural vibration signals affect the commands to the control effectors. Since the effectors 
apply forces to the structure, energy can be fed to the structure at various frequencies, including those 
where flex modes may be excited. Because structural damping is small, it is possible for the effectors 
to add energy faster than it is dissipated causing excessive structural deflections and possible structural 
failures. If the structural characteristics are ignored, the flight vehicle may not be properly controlled 
and in many instances it may exhibit self-excited divergent oscillations that can be destructive. The 
structural flexibility should, therefore, be considered in the control analysis, and the control system 
designer must be aware that divergent structural feedback can occur and must ensure that the flex 
phenomena are properly analyzed and compensated.  
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Problems arising from the dynamic interaction between the control system and the flexible structure 
are influenced by the sensor locations, the local structural flexibility, mode shapes, frequencies, and 
damping characteristics. The structure where the sensors are mounted may be excited by engine noise 
and local vibrations, and it may exhibit undesirable responses that can produce erroneous sensor 
signals or saturation which may seriously affect control system performance and operation. Local 
oscillations may also be reinforced by the control system. In adverse situations, an attempt is made to 
attenuate the interaction by modifying the control system, include filters, stiffening the sensor 
mounting structure, or relocating the sensors. If these modifications fail to resolve the interaction 
problem, structural redesign may be necessary. Improper determination and selection of dominant 
flexibility modes in the design has often led to catastrophic structural instability problems in flight 
vehicles. The design is therefore supplemented with frequency domain analysis, simulations, 
component tests, system vibration tests, and flight tests. 
 
Flexibility in general limits the control system bandwidth. As a rule of thumb there should be a factor 
of 10 separation between the control system bandwidth and the first dominant flex resonance. It affects 
also the vehicle performance and usually requires filtering. The control system must be designed to 
process the sensor signals so that there is a net flow of energy out of the structure. First, the control 
system may filter sensor signals at resonant structural frequencies, thereby, preventing the effectors 
from supplying energy at those frequencies. This is called "gain stabilization" and it avoids excessive 
response in high frequency flex resonances. In general, however, one or more of the lower frequency 
modes are not sufficiently separated from the control system bandwidth to permit gain stabilization and 
the alternative is "phase-stabilization", where the controller is designed to adjust the phase of the 
control forces and remove energy from the modes, and hence actively attenuating rather than 
amplifying the mode. Most designs employ both methods, with phase stabilization of low frequency 
modes and gain stabilization of high frequency modes. 
 
In launch vehicles the main source of flex mode excitation is the TVC. In aircraft, the acceleration of 
the vehicle in combination with the aerodynamic forces can excite the structure into bending motion 
especially in the wings and the tails. This causes significant aero-elastic phenomena to occur which 
may have a serious impact on vehicle stability and performance. The deflection of an elevator, for 
example, causes a torsional flexibility on the wing due to the aerodynamic loading in the opposite 
direction which reduces its effectiveness. Wing divergence is another aero-elastic phenomenon to be 
avoided. That is, when the aerodynamic center of the wing is in front of its centerline, the lift generated 
at high dynamic pressures has a tendency to rotate the wing (nose up), which increases the aero 
moment even further. This torsional moment is resisted by the wing stiffness. If the wing torsional 
stiffness is not enough, the wing will twist off. There are other factors to consider in the design of flex 
structures. Examine the external panels for the possibility of panel flutter. In digital control systems we 
must also consider the effect of high frequency aliasing where some vibration modes fold-back, excite 
and de-stabilize lower frequency modes. We may also have to include filters in the rate gyro and 
accelerometer signals before sampling to eliminate noise problems folding down and exciting 
structural modes. Furthermore, the frequency of programmed pitch and guidance commands should not 
coincide with either flexible or rigid-body mode frequencies. We should also consider filtering the 
input commands to remove signals that excite vibrations. 
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The oscillatory motion of a vehicle structure can be characterized with a combination of elastic modes 
which are excited by forcing functions generated from the TVC gimbaling, reaction jets, actuator 
forces, aerodynamic forces, propellant sloshing, aero-elastic coupling, reaction wheels, CMG, and 
other external disturbances. The term “elastic modes” or “structural modes”, refers to the normalized 
mode shapes of the flight vehicle in “free-free” vibration. The mode shapes and frequencies (or modal 
data) of the vehicle are obtained from a finite element modeling program, such as Nastran. Each 
bending mode is represented by a second order differential equation, shown in equation 2.7.1, that has 
a low damping coefficient (ζj), a resonance frequency (ωj) in (rad/sec), and a generalized mass mg(j) in 
units of (lb-sec2/ft) that normalizes the equation. The equation is excited on the right hand side by 
external forces and torques acting on the vehicle structure in different locations. It calculates the modal 
excitation of each mode (j) responding at its natural frequency ωj. The mode excitation is a time 
function called the generalized displacement ηj(t) of mode (j) in units of (feet). The coefficients on the 
RHS of this equation include a set of translational mode shapes [φxn(j), φyn(j), φzn(j)] along the vehicle 
x, y, and z axes, and a set of rotational mode slopes [σxn(j), σyn(j), σzn(j)] about x, y, and z, at each 
excitation point, called “nodes”, where a force or a torque is applied. They are obtained from the finite 
elements model. 
 
The output from each flex mode function is the generalized displacement of a specific mode (j). These 
are not physical variables, but intermediate states that define the excitation of each natural frequency 
under the influence of the combined forces and torques. The amount and the direction of excitation, in 
terms of magnitude and phase of each modal displacement (ηj) depends, not only on the forcing 
function, but also on the mode shapes and slopes of the structure at the excitation point. When a sensor 
is mounted on the structure, in addition to the rigid body motion, it also measures a linear combination 
of displacements (ηj) from all the flex modes which are observable at that sensor. The elastic modes 
produce high frequency oscillations at the sensor, superimposed on the top of the rigid body 
measurements. Furthermore, the amount and the direction by which each mode is detected at a sensor 
depend on the mode shapes and slopes of the structure at the sensor location. Flexibility also affects the 
response of the vehicle at the engine gimbals or aerosurfaces to actuator forces. It produces additional 
loading torques on the actuator due to flexibility at the hinges, reaction torques against the actuator 
control torques, and sometimes tail-wag-dog type of oscillations at the hinges. See the load-torque-
feedback effects in Section 2.10. 
 
In some cases the structural modes are not only excited by the direct application of forces and torques 
at structural nodes, but the flexible structure can also be excited by aerodynamic forces generated due 
to the vehicle motion relative to the atmosphere, and specifically, the angles of attack and sideslip and 
the body rates. These are aero-elastic phenomena, where aerodynamic forces acting on a flexible 
structure couple rigid-body and flexible-body dynamics and they can affect the control system 
performance. The aero-elastic coupling may cause the vehicle resonant frequencies undergo substantial 
and irregular variations along its flight, tending sometimes for resonances to approach one another 
rather than to increase uniformly with time as it would result from the consumption of a propellant. 
Aero-elastic coupling can sometimes be destabilizing because it may lower the frequency of the first 
flex mode closer to the rigid-body bandwidth while reducing the vehicle static stability, and phase 
stabilization of the lowest frequency vibration modes may be required. To protect against adverse aero-
elastic effects fins are sometimes installed to increase static stability and also stiffen the frequency of 
structural modes. 
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Aero-elastic excitation is characterized by a set of aero-elastic coefficients, the Generalized 
Aerodynamic Force Derivatives (GAFD), that couple the structural modes with aerodynamics, and 
specifically with variations in (α, β, body rates, and surface deflections). Aero-elasticity is more 
dominant in large and flexible aircraft because flexibility is affected not only by the TVC but also by 
the aerodynamic forces produced due to vehicle rigid-body motion in the atmosphere. In addition, the 
vehicle flexibility, such as a surfaces, wing or a tail, significantly affects the aerodynamic forces and 
moments and the overall vehicle performance, especially at high dynamic pressures. Complex CFD 
models are developed to study aero-elasticity and flutter effects and the aero-elastic coupling between 
structure and aerodynamics. Sometimes it becomes significant enough to include it in the control 
design and linear analysis. In some launch vehicle applications, such as the Space Shuttle during 
ascent, the flexure excitation due to the TVC is much more dominant and the aero-elastic effects were 
ignored. During descent, however, the aero-elastic effects were included.  
 
Another factor that affects flexibility is the inertia forces produced by the pivoting of the massive 
engines or control surfaces. These forces can yield undesirable deformations of the supporting 
structure and they in turn produce control disturbances. This excitation is characterized by the "inertial 
coupling coefficients" which couple the structural modes with the rotational accelerations of the 
control surfaces or nozzles. The inertial coupling coefficients, otherwise known as “h-parameters”, 
are created from the finite-elements program, with the modal data. The modes are “free-free” and they 
are created with the control surfaces included in the Nastran model and the joints at the hinges are 
locked (infinitely stiff). The control surface hinges are released in the simulation model by the 
inclusion of the h-parameters in the equations of motion, see equations (2-3) and (2-4-2). In the early 
phases of a design the aero-elastic coefficients are not usually available for modeling flexibility 
because their creation involves extensive CFD modeling. In the flex equations that follow we present 
two approaches for modeling flexibility. One that does not include aero-elasticity and it does not 
require GAFD and h-parameters data and a second method that includes both. In the first method the 
surfaces are assumed to be rigid and they are attached at the hinge of a flexible structure. The structure 
does not include the surfaces. The structure is excited by aero and inertia forces produced at the hinges 
of the control surfaces, due to rigid surface deflections, rates and accelerations. This approximation 
model is shown in equations (2.7.1) and (2.7.2). The second method is obviously more efficient 
because it includes both: aero-elastic and inertial coupling coefficients, and it is shown in Equation 
(2.7.4). The FEM includes the aero-surfaces with the hinges locked. 
 
 
The Structural Bending Equation: 
 
External forces and torques are applied at different locations on the vehicle and excite the structural 
modes. Each mode is represented by a second order, low damped differential equation that calculates 
the mode excitation which is represented by the generalized displacement ηj(t). Equation 2.7.1 
calculates ηj(t) as a function of the external forces and torques. The forcing functions are mainly due to 
forces and torques generated by the engines, RCS jets, aerosurface rotations, momentum exchange 
devices, and due to propellant sloshing. We are presenting two methods of modeling the flex mode 
excitation: a simple method that does not require GAFD, and a more efficient method that requires 
GAFD and inertial coupling coefficients. 
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Flex Mode Excitation without Aero-Elasticity and Inertial Coupling Coefficients 
  
In this case the inertial coupling coefficients hcs(k,j) and the GAFD data are not included. Equation 
2.7.1 calculates the generalized displacement of a flex mode (j) as a function of the external forces. 
The gimbaling engines, the slosh masses, and the aero-surfaces are attached as separate bodies that 
excite the flexible structure by generating reaction forces as a result of their motion. 
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Figure (2.7.1) Structural Mode excitation without GAFD and Inertial Coupling Coefficients 
 
The total deflection at a control surface (k) including flexibility is obtained from equation (2.7.2), 
where: φhsk and λhsk are the orientation angles of the hinge vector. 
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Where:  
 
mek, Iek  are the mass and moment of inertia of engine (k) about its gimbal 
ayek, azek are the vehicle accelerations at engine (k) gimbal along the y and z axes. 
FYek, FZek are the forces at engine (k) gimbal along the body y and z axes. 
FYsi, FZsi are the slosh forces at tank (i) along the body y and z axes. 
φzek(j), φyek(j) are the modal displacements for mode (j) at the engine (k) pivot, along the z and y axes 

respectively, in (ft/ft). 
σzek(j), σyek(j) are the mode slopes of mode (j) at the engine (k) pivot, about z and y axes respectively, 

in units of (radians/ft). 
φzsi(j), φysi(j) are the modal displacements in (ft/ft) of mode (j) at the slosh mass (i) location. 
φzcp(j), φycp(j) are the mode displacements for mode (j) at the disturbance point in units of (ft/ft), 

(assuming that the disturbance is applied at a point). 
φzasi(j), φyasi(j) are the mode displacements of mode (j) at the aero-surface (i) hinge, along the z and y 

axes respectively, in (ft/ft). 
σzasi(j), σyasi(j) are the mode slopes of mode (j) at the aero-surface (i) pivot, about the z and y axes 

respectively, in (ft/ft). 
ηj , ωj  are the generalized modal displacement, and mode frequency of mode (j)  
mg(j)   is the generalized mass for mode (j)  
δzek, δyek are the deflections of engine (k) about z and y 
Mhcs(k)   is the hinge moment due to aero forces at the surface (k) from equation (2.3-3) 
δfcs(k)  is the control surface deflection including flexibility from equation (2.3-3) 
azek   is the z-acceleration at the gimbal of engine (k) including flex 
azs(l)   is the z-acceleration at the hinge of the control surface (l) including flex 
σhcs(l) is the modal slope at the center of the hinge line of surface (l) resolved about the hinge 

vector 
φhsk , λhsk  are the bank and sweep angles of the hinge vector 
 
The bending modes are mainly excited by engine, aero-surface, and slosh forces. In the absence of 
aero-elastic data a bending mode is also excited by the aerodynamic forces created by surface 
deflections, equation (2.5.5), and they are applied at the center of the hinges. There are also forces 
generated at the gimbals and hinges due to variations in vehicle acceleration, from Equations (2.1.8 & 
2.1.9). This model is obviously not as accurate as the aero-elastic model presented in Equation (2.7.4).  
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Modal Excitation Using GAFD and Inertial Flex Coupling Coefficients 
 
Generalized Aerodynamic Force Derivatives and inertia coupling coefficients provide a more accurate 
modeling of the aero-elastic coupling between aerodynamics and structural flexibility and also the 
dynamic coupling between control surface accelerations and structural excitation. The GAFD data 
consists of three types of coefficients. 
 
I. A set of coefficients that define how the vehicle basic aerodynamic forces and moments, such 

as: CZ, Cm, Cn, etc. are affected by flexibility, specifically, from the modal displacements (ηj), 
and the modal rates. 

 
II. Another set of coefficients define how the modal displacement variable (ηj) of a flex mode (j) 

from equation (2.3.1), is excited by the rigid vehicle motion, specifically by changes in the 
angles of attack and sideslip, body rates, control surface deflections, and by interactions with 
the other modes. Also by the rates of change of the above variables. 

 
III. The third set of coefficients are hinge moment coefficients. They define how the moment at the 

hinge of a control surface (i) is affected by changes in the vehicle angles of attack, sideslip, 
body rates, accelerations, modal displacements, modal rates, and also by the interactions with 
other control surface deflections (δcs) and rates. These coefficients are also be discussed in the 
Hinge Moment equations, Section (2.5.2). 

 
The GAFD data are calculated using unsteady aerodynamic theory by post processing the generalized 
aerodynamic forces [Qij] which is an aerodynamic matrix obtained from the “Doublet Lattice” process. 
It requires a CFD model and a finite elements model. The [Qij] terms are also used for flutter and loads 
analysis. The generalized aerodynamic forces are complex matrices and they are functions of the 
vehicle Mach number, dynamic pressure, at reduced frequencies. The GAFD matrices are computed at 
specific frequencies that correspond to the modal frequencies plus one or two additional frequencies 
below the first flex mode. At each Mach number and reduced frequency a complex generalized force 
matrix is generated, a matrix for the real part and a matrix for the imaginary part. In flutter analysis, a 
Mach number and a reduced frequency is assumed and the flutter solution is calculated. For the 
development of a control analysis model, a single complex generalized aerodynamic force matrix, 
independent of frequency, is constructed by extracting the corresponding rows from the reduced 
frequency dependent matrices. The real part of this complex matrix consists of displacement 
coefficients and the imaginary part consists of the velocity coefficients. The inputs to the Doublet 
Lattice process are the modal data (mode shapes and mode frequencies) obtained from the finite 
elements model. The aerodynamic shape of the vehicle, including the fuselage, has been initially 
modeled by means of flat plates and the Doublet Lattice process calculates the generalized 
aerodynamic forces at different Mach numbers. When the fuselage is modeled as a slender body and an 
interference cylinder is included with the flat plates representing the lifting surfaces, adjustments can 
be made to the aero model to closely match measured data. For example, the rigid body aerodynamic 
derivatives, such as Cma, Cnb etc, derived from the Doublet Lattice output are compared with the 
aerodynamic derivatives obtained from wind tunnel data and appropriate model corrections are made. 
The program finally combines the FEM with the aerodynamic model and creates the Generalized 
Aerodynamic Forces, also known as the Qij matrix. The GAFD data used in the equations are extracted 
from the Qij matrix. 
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The aero-elastic model is more accurate because it is based on a detailed and more refined CFD aero-
elastic model and it provides a more accurate formulation of flexibility and how it couples with 
aerodynamics. Equation (2.7.4), is similar to (2.7.1). It calculates the modal displacement (ηj) but the 
forcing functions from the control surfaces are calculated not by direct forces at the surface hinges, as 
in (2.7.1), but by using GAFD and h-parameters. The aero-elastic terms contribute to the modal 
excitation by the aerodynamic forces created as a result of the vehicle motion relative to wind (αw, βw, 
body rates), also the surface deflections δs(k)), and also the rates of the above. The coefficients also 
include dynamic coupling with other modes (ηj). 
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Equation (2.7.4) Bending Mode (j) Excitation Using GAFD and Inertial Coupling Coefficients 
 
Where: 
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S*
ref is the surface reference area of the vehicle in (ft2) used to scale the GAFD data.  

l*
ch, l*

sp are the chord and span reference lengths in (feet) used to normalize the GAFD data. 
skc   is the chord in (feet) of the control surface (k) used to normalize the GAFD data. 

δcs(k) is the clockwise rotation in (radians) of a control surface (k) about its hinge vector. The 
rotation is only due to actuator displacement and it does not include structural 
flexibility. 

hs(k,j) are the inertial coupling coefficients (h-parameters) in (lb-sec2) which couple mode (j) 
excitation to surface (k) acceleration. 

ηi  is the generalized modal displacement in (feet) of a flex mode (I). 
 
The inertial coupling coefficients are the off-diagonal blocks in the mass matrix of the FEM that 
couple engine or surface accelerations with flexibility. They couple the angular acceleration of a 
control surface (k) to the excitation of a mode (j). This formulation is more accurate than equation 
(2.7.1), where the surfaces and nozzles are assumed to be rigid and the structure excitation is a result of 
inertial forces generated from rigid surface or nozzle accelerations. In Equation (2.7.4) the excitation of 
a mode (j) due to the control surface (k) accelerations is defined by the inertial coupling coefficients, or 
h-parameters hs(k,j). The mode is similarly excited by the pitch and yaw gimbal accelerations by the 
engine inertial coupling coefficients hye(k,j) and hze(k,j). This method is more accurate because it 
includes the flexibility of the effector itself and its interaction with the vehicle structure. Unlike 
equation (2.7.1) where the gimbaling engines and the control surfaces are separate bodies, in equation 
(2.7.4) the aero-elastic flex model includes the aero-surfaces with the hinges locked. The hinges in 
equation (2.7.4) are released by the h-parameters hs(l, j). 
 
Note, in Equation (2.7.4) the aero-elastic coefficients were included only for the control surfaces. The 
inertia coupling, however, is implemented using h-parameters for both: surfaces and nozzles. Since the 
modal excitation due to engine and surface slewing is captured by the h-parameters, unlike equation 
(2.4.3), the engine forces in this case should include only the TVC and throttling terms, as shown in 
Equation (2.7.5), and they should exclude the inertial terms. 
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Equation (2.7.5) Engine Forces at the Gimbal due to Gimbaling and Throttling, Excluding the Inertial Terms 
 
In the situation, however, where the gimbaling engines are assumed to be rigid enough to be modeled 
as separate bodies without h-parameters, then the engines should be implemented as in Equation 
(2.7.1), and the engine forces at the gimbals should be calculated from Equation (2.4.3) including the 
inertial forces. 
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2.8 Modeling Flexible Vehicle Interaction with Actuators 
 
This section describes the interconnection and the dynamic coupling between the vehicle model and 
the actuators when the dynamic models include tail-wag-dog and load-torque feedback. Figure 2.8-1 
shows the dynamic model of a flight vehicle that is controlled by three aerosurfaces (Elevon, Aileron, 
and Rudder), and each aerosurface is controlled by a separate actuator subsystem. A mixing-logic 
matrix receives the: roll, pitch and yaw acceleration demands from the flight control system and 
converts them to Elevon, Aileron and Rudder actuator commands. The actuator models used in our 
analysis are a little more complex than SISO transfer functions. In addition to the shaft control 
hydraulics they include the aerosurface inertia dynamics about the hinge. A shaft is driving the load 
dynamics through some stiffness and the aerosurface load is pivoting about a hinge. The actuator 
outputs in addition to deflection in (rad) they also include rate and rotational acceleration at the hinge. 
The gimbal acceleration inputs to the vehicle model produce the TWD dynamics. The actuator inputs, 
in addition to deflection command in (rad) they also include the external load torque at the hinges 
coming from the vehicle model. They feed-back to the actuator hinge moment inputs closing 
mechanical feedback loops, as shown in Figure 2.8-1. This load-torque is reacting against the actuator 
torque and the actuator control torque must be able to overcome it. 
 

 
Figure (2.8.1) Block Diagram showing the interconnections between the Mixing Logic, the Vehicle and the Actuator 
dynamics 
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The dynamic interaction between actuator dynamics, the control system, non-linearities, and flexibility 
of the vehicle back-up structure and load, is very critical in the design because it affects performance 
and often causes “tail-wag-dog” type of oscillations if not properly implemented. Factors such as, 
hydraulic fluid compressibility, gimbal friction, nozzle or control surface flexibility, backup structure 
stiffness, load inertia, and other parameters should be included correctly in the actuator model and the 
analysis. It is a good practice, therefore, to keep the local resonant frequency at the hinge above the 
tail-wags-dog frequency. Figure (2.8.1) shows a typical vehicle and actuator interconnection consisting 
of three main elements: the vehicle model, the actuators (one actuator per control surface input), and 
the mixing logic that converts the FCS demands to deflection commands. The control surface 
deflection, rate, and acceleration outputs from the actuator model drive the vehicle dynamic model. 
The surface deflections generate the aero forces (or in the case of a gimbaling engine the TVC forces) 
that control the vehicle. The load accelerations create the tail-wag-dog forces. The rates create 
damping forces (not frequently used). The vehicle model creates hinge moment outputs at each hinge 
representing the external loading due to vehicle acceleration at the gimbals. They are undesirable 
because the actuator has to be powerful enough to “fight” against them. Each actuator model in 
addition to the deflection command it has a second HM input to receive the external load torques from 
the vehicle hinge moment outputs via a mechanical feedback loop. In the case of a TVC engine the 
vehicle model provides two load-torque outputs for pitch and yaw gimbaling. 
 
The analyst must be very careful in selecting the stiffness coefficients in the actuator model in order to 
avoid double-booking them in both the actuator and the structural models. When modeling the servo 
system that controls the position of a surface or a nozzle relative to the vehicle it involves three types 
of stiffnesses, (a) the stiffness of the backup structure which is where the actuator is attached to the 
vehicle structure, (b) the actuator stiffness consisting of piston plus oil (or electrical) stiffness, and (c) 
the load stiffness due to flexing of the surface or nozzle. All three stiffnesses combine together to form 
a combined stiffness (KT) that is associated with a resonance. When the analysis is based on rigid-body 
models the flexibility of the backup structure supporting the hinge can be included in the actuator 
model. In fact all three stiffnesses can be included and they will define the load resonance about the 
hinge as a function of the load moment of inertia and the combined stiffness coefficient (KT). This 
implementation is useful in evaluating the actuator loop stability and performance because the flight 
control system interacts with the load dynamics, the actuator shaft, and the backup structure, and they 
often excite each other to instability, often due to stiction, backlash, and other non-linearities.  
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When structural flexibility is already included in the flexible vehicle model, including the actuator 
attachment, then it is no longer necessary to include the backup and load stiffnesses in the actuator 
because those resonances are already captured in the structural model by the modal data at the gimbal. 
The backup and load stiffnesses in the actuator model they should be set to infinity and only the 
actuator piston stiffness should be included in the actuator model. This applies in both cases: (a) when 
the flex model includes the control surfaces with the joints locked and released via the h-parameters, 
and (b) when the flex modes exclude the engine nozzles and the rigid engines are attached via the 
coupling equations. Actuator models which are intended to be used in rigid body vehicle models are 
referred to as “soft” because they include all three stiffnesses. A simplified soft actuator is shown in 
figure (2.8.2). The deflection (δ), rate, and acceleration outputs consist of: the rigid surface rotation, 
plus the additional deflection at the hinge caused by the combined structural compliance due to (KT). 
The feedback loop in figure (2.8.2) represents the measurement of the actuator piston extension (xfb) 
which is not exactly equal to the actual piston position (xp) but it includes the backup structure and 
load deformation effects which corrupt the measurement. Under ideal conditions when those two 
stiffnesses are infinitely stiff, then the measurement (xfb = xp). In other words, the soft actuator 
captures the local resonance of an aero-surface about the hinge, or the so called “pendulum resonance” 
of a nozzle about its gimbal. The stiff actuator does not have it because the resonance is included in the 
Nastran model. In some cases it is okay to combine “soft” actuator models with flexible vehicle 
models when the backup and load stiffnesses in the finite elements model were taken out by setting 
them to very stiff values.  
 
When the vehicle dynamic model includes inertial coupling coefficients (h-parameters), the actuator 
linkage dynamics are mechanized in the finite elements model. The backup stiffness and the load 
stiffness are also included in the flex model but the actuator piston is locked and the surfaces do not 
rotate at the hinges. The actuator is released in the simulation equations by the h-parameters hs(k,j). 
The h-parameters, also known as inertial coupling coefficients, are coupling the vehicle flexibility and 
surface accelerations. In this case the “stiff” actuators are used because the flexibility at the hinges is 
already captured in the flex model coefficients. Only the actuator piston stiffness in series with the oil 
stiffness (for hydraulic actuators), or in the case of an electro-mechanical actuator, the actuator shaft 
stiffness in series with the electrical stiffness, shown as Kact in figure (2.8.2), should be included in the 
“stiff” actuator model. In general, the actuator stiffness (Kact) is much larger than the total stiffness 
(KT) used in the soft actuator model. Simple illustrations of “soft” and “stiff” types of actuator models 
are shown in figures (2.8.2 & 2.8.3). 
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Figure (2.8.2) Soft Actuator Model that includes all three: Actuator, Backup, and Load Stiffnesses 

 
Figure (2.8.3) Stiff Actuator Model that includes only the Shaft Stiffness in (KT) 
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2.9 Modeling a Wind-Gust Disturbance 
 
The air through which an aircraft flies is never still, and as a consequence, the wind causes 
disturbances on the flight vehicle, and its motion is always erratic. The total velocity of the vehicle 
relative to the air mass is obtained by the combination of two component vectors: a component due to 
the vehicle velocity relative to the earth, plus the velocity of the wind relative to the ground. The nature 
of those air disturbances is influenced by many factors, but it is usually turbulence which occurs in and 
around clouds, wind shears which are violent atmospheric phenomena caused due to severe downburst 
of air and sudden changes in the direction and velocity of the wind as the altitude changes, and gusts 
which are random, short duration sharp impulses of variations in wind velocity relative to the vehicle. 
In simulations, turbulence can be represented by a white noise generator passing through a low-pass 
second order filter. A wind-shear is a steady and persistent disturbance and it can be represented with a 
step in velocity filtered by a low-pass filter. A short wind gust WGust represents an unexpected change 
in the air-mass velocity in (feet/sec) with respect to the ground that must be added to the vehicle 
velocity relative to the ground. It can be defined by (1-cos) function. 

( )( )twtw GGustG ωcos1)( −=  
 
The wind disturbance causes variations in the angles of attack and sideslip (αw and βw) of the vehicle 
relative to the airflow, in comparison with the steady-state trim angles without the wind (α0 and β0). It 
also changes the magnitude and direction of the vehicle velocity relative to the air-mass (δVw). 

 
Figure 2.9.1 Wind-Gust velocity vector WGST is resolved along the vehicle body axes 
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The velocity and direction of the winds vary considerably with seasons and altitude. Prior to launching 
a vehicle the average wind velocity above and around the launch site is measured at different altitudes 
by releasing weather balloons, and the wind data received are used to adjust the vehicle trajectory in 
order to maximize performance.  
 
In this model, the wind direction relative to the vehicle body axes is fixed and it is defined by two 
angles: an elevation angle (εWG) of the wind vector with respect to the vehicle x axis, and an azimuth 
angle (ΨWG) which is the angle between the vehicle z axis and the projection of WGST in the y-z plane, 
see Figure 2.9.1. The gust vector WGust can then be resolved in three velocity components (WGX, WGY, 
and WGZ) along the vehicle body axes, as shown in this Figure 2.9.1. 
 
In a typical airplane, for example, when the elevation gust angle (εWG =0) means that the wind gust 
direction is coming head-on towards the vehicle, along the -x axis. When the azimuth and elevation 
angles are both equal to 90 degrees, it means that the wind gust direction is coming toward the pilot 
from the right side along the -y axis. When ΨWG=0 and εWG=90 degrees, it means that the gust is 
coming from the bottom of the aircraft along the -z axis, towards the pilot’s feet. 

 
Figure 2.9.2 Change in the Angle of Sideslip due to the Wind-Gust 
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The angles of attack and sideslip (α, β) are calculated in equations 2.1.5 from the normal and lateral 
velocity relative to earth alone, assuming that the air mass is not moving. In the presence of wind, 
however, the angles of attack and sideslip and also the vehicle velocity are modified to: (αw, βw and 
δVw) relative to the airflow. The equations in Figures (2.9.2 and 2.9.3) calculate the total angles of 
attack and sideslip relative to the air mass which includes the effects of the gust velocity. Instead of (α, 
β, and δV), the variables (αw, βw, and δVw) which include the wind effect are used in equations (2.5.4 
and 2.5.7) to calculate the total aerodynamic forces and moments acting on the vehicle. 

 
Figure 2.9.3 Changes in the vehicle Angle of Attack and Air-Speed due to the Wind-Gust 
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2.10 Load-Torques 
  
The linear and angular accelerations of the vehicle generate disturbance torques at the engine gimbals 
or at the hinges of the aerosurfaces. The actuator device, which is either hydraulic or electro-
mechanical position control servo, must have the control torque capability to overcome friction, load 
inertia and to react against the externally generated load-torques in order to position the engine or 
aerosurface at the angle commanded by the flight control system. This external loading on the actuator, 
in launch vehicles is referred to as “Actuator Load-Torque” or sometimes “Dog-Wags-Tail”. In aircraft 
it is called “Hinge Moments”.  
 
The vehicle accelerations at the hinges consist of both: rigid body and flex components due to local 
vibrations. For preliminary control analysis we do not include tail-wags-dog and load-torque dynamics 
in the vehicle model, often because the information is not yet available. In Flixan we set the effector 
flags in the vehicle input data to “NO TWD”. Later on, when the design matures, we can turn on the 
TWD/ Load-Torque option by setting the flag to “WITH TWD” in the effector data. When the flag is 
set to “With TWD/load-torque”, the vehicle model includes the required inputs and outputs that enable 
it to be properly combined with the actuator models. It includes gimbal rates and acceleration inputs in 
addition to gimbal deflections for each engine and aerosurface that enable the implementation of the 
tail-wag-dog dynamics in the vehicle model. It also provides load-torque outputs for each effector that 
is fed back to the corresponding actuator for the implementation of the load-torque feedback loop, as 
shown in Figure 2.8.1. Otherwise, if the flag is set to “NO TWD” those additional inputs and outputs 
are not included in the dynamic model and in this case a simple transfer function is sufficient for 
modeling the actuator.  
      
2.10.1 Load Torques at the Nozzle Gimbal 
 
We will examine the load-torques for the engine nozzles and for the control surfaces separately, 
beginning with the load-torques at an engine gimbal. We will consider two methods of implementing 
flexibility in the load-torque equations, similar to the approach taken in the equations modeling the 
structural flexibility. That is, a simple method that does not require h-parameters and a more refined 
approach that includes the h-parameters. In the first case we assume that the engines are rigid and they 
are dynamically coupled with a flexible vehicle that does not include the engines in the structural 
model. In the second case the engines are included in the finite elements model rigidly attached at the 
gimbals and the reaction load torques are calculated via the pitch and yaw inertial coupling 
coefficients: hye(k,j) and hze(k,j). 
 
Rigid Engine Coupling with Flexible Vehicle 
 
The first implementation is shown in equation 2.10.1a, where: TLYe(k), TLZe(k) are the load torques due 
to vehicle motion in pitch and yaw axes at the gimbal of the kth engine. 
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For small variations about trim conditions the load-torque equations become: 
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Equation 2.10.1 Variations in Pitch and Yaw Load-Torques at Engine (k) Gimbal 
 
Where: 
axek, ayek, azek   are the vehicle accelerations at kth gimbal along x, y, z, including flexibility 
∆Ek and ∆Zk   are the pitch and yaw trim angles of kth engine as defined in Figure 2.4.4 
Iek , mek   are the kth engine mass and engine moment of inertia about the gimbal 
Lek   is the moment arm between the kth engine gimbal and engine CG 
σye(k,j), σze(k,j)  are the pitch and yaw modal slopes of mode j at the kth engine 
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Vehicle Accelerations at the gimbal 
 

• The first term in the pitch equations 2.10.1 is the load torque on the actuator due to changes in 
the flight path angle, caused by the centripetal force: 𝑚𝑚𝑚𝑚𝛾̇𝛾. It’s negative because 𝛾̇𝛾 is negative 
and it becomes significant towards the end of second stage because V is high.  

• The second set of terms is the torque generated by the coupling of vehicle translational 
accelerations AX and AZ and the pitch and yaw engine deflections δyek and δzek from the trim 
angles ∆Ek and ∆Zk, see equations 2.4.2. The deflections consist of rigid rotation plus rotational 
bending at the gimbal.  

• The last set of terms in equations 2.10.1 is the reaction torque generated by the rotational 
acceleration of the vehicle at the gimbal. The nozzle inertia produces a reaction torque against 
the actuator (minus sign). The acceleration is a combination of rigid rotation plus rotational 
bending at the gimbal.  
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Figure 2.8.1 shows the load-torque feedback loop for a vehicle with three aerosurfaces. This is a 
mechanical loop from the control surface hinge moments outputs generated by the vehicle model to the 
actuator load-torque inputs.  
 

• Each actuator has two inputs: the first input (δcomd) comes from the TVC mixing logic which 
converts the roll, pitch, and yaw flight control system demands to actuator deflection 
commands, and the second input is the load-torque that receives the hinge moment feedback 
from the vehicle model.  

• Each actuator has three outputs: engine deflections in (rad), engine rates in (rad/sec), and 
engine accelerations in (rad/sec2). The actuator outputs connect to the inputs to the vehicle 
model. One actuator per aerosurface or two actuators per TVC engine (pitch and yaw). 

 
The engine accelerations are important for the implementation of TWD dynamics. The rates provide 
aero damping forces in the control surfaces. The positions generate the aerodynamic forces. Detail 
actuator models are described in Section 4. 
 
Engine Load-Torque using Inertial Coupling Coefficients 
 
When the pitch and yaw inertial coupling coefficients hye(k,j) and hze(k,j) for the engine nozzles are 
available, the load-torque equations are modified as shown in Equation 2.10.2. In this case the torque 
due to flexibility at the gimbal is captured by the inertial coupling coefficients and this is a more 
accurate representation than Equation 2.10.1, where the rigid aerosurfaces is coupled via the modal 
slopes at the support structure. 
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Equation 2.10.2 Pitch and Yaw Load-Torque Variations Using Inertial Coupling Coefficients (hye) 
 
The dynamic coupling between structure and load-torque in this case is included in the h-parameters 
and the FEM. The linear accelerations at the gimbals, therefore, should not include flexibility: 
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Accelerations at the Engine Gimbals without Flex 
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2.10.2 Hinge Moments at the Aerosurfaces 
 
The moment generated at the hinge of a control surface as a result of actuator and vehicle motion is 
similar in nature to load-torque at the engine gimbal. In the Flixan program the hinge moments are 
implemented using two different approaches: a simple method and a more complex one that requires h-
parameters and GAFD data. In the first approach we assume that the aerosurfaces are rigid panels that 
interact with a flexible vehicle by the aerodynamic and reaction forces generated at the hinges. The 
second method is more efficient because it is based on a finite elements model that includes the 
aerosurfaces with the hinges locked. It uses inertial coupling coefficients to calculate the inertial 
moments due to aerosurface slewing and hinge moment coefficients obtained from a GAFD model. 
 
Rigid Surfaces Coupled with a Flex Vehicle 
 
The first method assumes that each aerosurface is rigid and it is attached to the corresponding node of 
the flexible structure and flexibility at the attachment is captured by the modal slope (σhsk) at the hinge. 
Their mass properties must not be included in the vehicle mass properties and in the structural models.  
The moment at the hinge of the control surface is produced by the vehicle translational and rotational 
accelerations at the hinge, including flexibility. There are also contributions due to variations in the 
angles of attack and sideslip and their rates. It is also affected by the aerosurface deflection and rate, as 
shown in Equation 2.10.3. 
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Equation (2.10.3) Hinge Moment Variations at a Control Surface Hinge 
 
Where: 
 
Wsk   is the vehicle rate resolved parallel to the hinge vector of control surface (k). 
aNs(k)  is the vehicle acceleration at the hinge line perpendicular to the control surface (k), as 
  defined in equation 2.10.4. 
Ssk, csk  are the aero-surface reference area in (ft2) and its reference length in (ft). They are 

 defined in the aero data and are used to normalize the hinge moment coefficients.  
φhsk , λhsk are the kth aerosurface hinge vector bank and sweep angles. 
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• The first three terms on the right hand side of the hinge moment equation are reaction moments 
at the hinge of the kth control surface due to vehicle linear acceleration at the hinge.  

• The fourth term represents the moment generated by the centripetal force due to the variation in 
flight path angle (γ).  

• The fifth term is a reaction moment due to the vehicle angular acceleration skW resolved about 
the kth hinge vector.  

• The sixth term is also a reaction moment due to vehicle rotational bending at the hinge of the 
control surface.  

• The last term represents variations in aerodynamic loading at the hinge due to variations in the 
angles of attack and sideslip (relative to the wind), the aerosurface deflection, and the rates of 
those variables.  

• The surface deflections δfcs(k) include also structural flexibility components as defined in 
equation 2.5.6.  
 

The modal slope (σhsk) about the hinge vector of a control surface (k) is defined as a function of the 
hinge orientation angles and the modal slopes about x, y, z, as in equation 2.10.5 

( )σ φ σ φ σ λ λ σhsk hsk ysk hsk zsk hsk hsk xsk= + +cos sin cos sin    (2.10.5) 
 
The vehicle acceleration along x, y, and z, at the mid-point of the kth hinge line is defined by equation 
2.10.6. The accelerations include structural accelerations. 
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      (2.10.6) 

 
The moment arms between the hinge line of an aerosurface (k) and the vehicle CG are defined in the 
following equations: 

  (2.10.7) 
 
  

l X X  l Y Y  l Z ZXSk Sk CG YSk Sk CG ZSk Sk CG= − = − = −
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Using GAFD and Inertial Coupling Coefficients 
 
A more accurate representation of the hinge moments can be obtained when the inertial coupling 
coefficients and hinge moments coefficients are available from GAFD data, as shown in equation 
2.10.8. The mass properties and finite elements model include the aerosurfaces in this case, and the 
hinge moments due to aerosurfaces slewing is calculated by the inertial coupling coefficients hs(k,j).  
 
The hinge moment coefficients are obtained from the GAFD model and they include terms due to the 
angles of attack and sideslip variations relative to the airflow, including rates. There are also hinge 
moment contributions due to the vehicle angular rates and accelerations, surface deflections and rate of 
deflections, and terms due to flex mode excitations (ηj) and rates. 
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Equation (2.10.8) Hinge Moments at the Control Surfaces, using GAFD derived Hinge Moment and Inertial 
Coupling Coefficients 
 
Where: 
 
Ssk is the reference area in (ft2) of a control surface (k), used to normalize the  GAFD data. 
csk is the reference length of a control surface (k) in (ft), used to normalize the GAFD. 
δcsk is the clockwise rotation of the control surface (k) about the hinge vector. It does not include 
 structural flexibility at the hinge. 
lsp lch are the reference lengths in (feet) used to normalize the GAFD data. They are normally equal 
 to the vehicle span (lsp) and mean aero chord (lch) used in the aero equations. 
hs(k, j) is the inertial coupling coefficient that couples the flex mode (j) generalized acceleration to the 

hinge moment at surface (k). In matrix form it is the transpose of the h-parameters matrix used 
in equation (3.9.4). 

Wsk  is the vehicle rate resolved parallel to the hinge vector of control surface (k). 
aNs(k) is the vehicle acceleration at the hinge line perpendicular to the control surface (k), as  
 defined in equation (2.10.4). 
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The angles {φhsk and λhsk) are the bank and sweep angles that define the orientation of the control 
surface hinge vector with respect to the vehicle axes, as shown in Figure 2.5.3.  
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The vehicle accelerations along x, y, and z, at the mid-point of the kth hinge line is defined by equation 
2.10.10. Notice that the linear accelerations do not include the flex contributions because the flexibility 
coupling at the hinge moments is captured by the inertial coupling coefficients hs(k,j). Also the control 
surface deflections and rates { )(),( kk cscs δδ  } in this case are relative to the hinge and they do not 
include deformation at the hinge because it is already included in the flex implementation. 
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2.11 Output Variables 
 
The output variables represent vehicle sensor measurements. They are functions of the dynamic model 
states, including structural flexibility. They are used for modeling sensor characteristics, implementing 
guidance and control laws in simulations, and also in dynamic models for control analysis and design. 
They consist of Euler angle attitude measurements, rate gyros, accelerometers, altitude and velocity 
sensors, cross-range velocity, and angles of attack and sideslip, (αw & βw) sensors relative to the 
airflow. The following equations describe the sensor measurements as a function of vehicle states. 
 
2.11.1 Vehicle Attitude, Euler Angles 
 
The Euler angles (Φ, Θ, Ψ) are used to define the orientation of the vehicle body axes relative to an 
earth bounded reference axes or to a local-vertical-local-horizontal (LVLH) frame. They are calculated 
by integrating a set of kinematic differential equations, which are functions of the body rates, and used 
in 6-DOF simulations. There are 12 sets of kinematic equations that can be used to calculate the Euler 
angles by integrating functions of the body rates. Their derivation depends on the chosen rotational 
sequence. The Euler angles, however, are not suitable for large angle maneuver simulations because 
they are vulnerable to singularities. Quaternions are a better choice for modeling attitude, because they 
do not have singularities, but quaternions are beyond our scope. The analyst must choose a set of Euler 
equations that will prevent singularities in the range of attitudes of a particular application. 
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Equation (2.11.1) Attitude Propagation as a function of body rates 
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Equations 2.11.1 include three commonly used sets of differential equation for propagating the Euler 
angles, as a function of body rates (P, Q, R). They must be initialized at some initial attitude values. 
The angle Θ is measured between the vehicle x axis and the local horizontal plane. The angle Φ is the 
angle between the vehicle y axis and the horizontal plane. The angle Ψ is between an arbitrary 
reference line in the horizontal plane and the projection of the vehicle x axis in that plane. 
 
Equations 2.11.2 are obtained by linearizing equations 2.11.1. They calculate variations in roll, pitch, 
and yaw Euler angles (φ, θ, ψ), measured with respect to the trim Euler angles (Φ0, Θ0, Ψ0). They 
represent variations from the steady-state attitude measurements (Φo, Θo, Ψo) as seen by the flight 
vehicle attitude sensors. They are included in dynamic models used for linear control analysis. 
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Equation (2.11.2) Attitude Propagation as a function of Body Rates for Small Variations 
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2.11.2 Vehicle Altitude (h) 
 
The rate of change in vehicle altitude ( h ) is related to the velocity and flight path angle (γ) by the 
following equation:  sinh V= 0 γ . We can also prove that the rate of change in altitude with respect 
to ground can be expressed in this form. 

( ) sin cos cos cos sin sin cos cos sin cosh V= − −0 Θ Φ Φ Θ Φα β β α β  (2.11.3) 
 
This equation can be linearized by replacing γ with a nominal (γo) plus a variation (δγ) as follows: 
 sin( )h V= +0 0γ δγ   

 
Where: γ α δγ θ α0 0 0= − = −Θ and  
γo is the nominal flight path angle  
δγ is the small perturbation about (γo), and  
V0  is the nominal vehicle speed along the velocity vector.  
 
After linearization, we can calculate variations in vehicle altitude (δh) relative to trim altitude (ho) by 
using equation 2.11.4, as a function of variations in (δV, α, β, θ, φ). 
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Equation (2.11.4) Rate of Change in Vehicle Altitude  
 
The cross-range velocity in the lateral direction VCR is a function of velocity and heading direction, as 
shown below.  
V VCR = +0 cos( ) sin( )γ β Ψ        (2.11.5) 
 
After linearization, the variation in cross-range velocity is as follows:  

[ ]δ γ β β ψV Vcr = + +0 0 0 0cos( ) cos( )Ψ      (2.11.6) 
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2.11.3 Gyros or Rate Gyros 
 
The roll, pitch and yaw signals measured by a gyro or a rate gyro located on the vehicle consists of two 
components: a rigid-body motion (pb, qb, rb), plus an elastic component that represents the local 
flexibility of the structure at the rate gyro. The generalized displacements ηj(t) generated by the flex 
modes are not directly measurable and they do not represent any physical quantity but they do affect 
the measurements via the mode shapes at the sensors. A gyro sensor measures not only rigid-body 
motion but also a linear combination/ superposition from all modal displacements ηj, that is, modes 
detectable at the gyro node as shown in equation 2.11.7. The rigid-body roll, pitch and yaw rates are 
shown in equation 2.2.2. 
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Where: 
pg  qg  rg are the rates sensed by the gyro. 
Nmod  is the number of bending modes. 
σxg σyg σzg are the modal slopes of the jth mode at the kth gyro location in (rad/foot). 
η(j)  is the generalized modal displacement for the jth mode 
 
 
Vehicle Rates with Respect to the Stability Axes 
 
When the flight vehicle is operating at high angles of attack, roll maneuvering is usually performed by 
rotating about the velocity vector V0 instead of the x-axis. This minimizes the sideslip transients and 
the undesirable side loads. The vehicle, therefore, is commanded to rotate about both: roll and yaw 
body axes (Pb & Rb) simultaneously in order to minimize sideslip transients. We often need to create, 
therefore, vehicle models that include roll and yaw output rates with respect to the stability axes rather 
than the body axis which is most commonly used. The following equations calculate the roll and yaw 
rates (Ps and Rs) in the stability axes as a function of nominal body rates and the angle of attack.  
 
P P R
R R P

s b b

s b b

= +
= −

cos sin
cos sin

α α
α α  

 
This measurement is relative to the velocity vector V0 instead of the body x-axis. The stability axes roll 
rate Ps represents rotations about the velocity vector. The stability axes yaw rate Rs is orthogonal to the 
roll and pitch axes. The pitch rate in stability axis is the same as in the body axes. 
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The variations in stability rates (ps and rs) are obtained from equations 2.11.8 by linearizing the 
previous equations relative to trim (α0) and the nominal body rates (P0 and R0). They are related to the 
variations in the body rates (pb and rb) and in the angle of attack (α). 
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Equation (2.11.8) Body to Stability axes transformation for small variations  
 
This transformation is useful in developing dynamic models at high angles of attack, where roll 
rotations are commanded about the velocity vector rather than the x axis. Stability axis models are 
often used for flight control design at high angles of attack. Guidance commands are calculated in 
stability axes rather than in the body axes and the control gains “assume” a stability axes rate feedback, 
which is transformed to body axes roll and yaw commands that simultaneously rotate the aileron and 
the rudder to rotate the vehicle about the velocity vector. This implementation minimizes the angle of 
sideslip and hence lateral loading. For more details read the Space Shuttle reentry example where the 
vehicle is commanded to rotate about the velocity vector. 
 
Turn Coordination 
 
In a coordinated turn the vehicle is experiencing zero lateral acceleration at the cg. It banks at an angle 
Φ and allows a small gravity component to counteract the centripetal force due to turning. It maintains 
the same pitch and roll attitude but its heading is changing at constant rate. Turn coordination is 
desirable for passenger comfort and also the pilot functions more effectively. It minimizes sideslip and 
undesirable aero loading and maximizes aerodynamic efficiency. To perform coordinated stability-axis 
rolls, both roll and yaw controllers are used to maintain zero sideslip. At low angles-of-attack there is 
usually adequate rudder power to obtain the desired motion. However, as the angle-of-attack increases, 
the demand on rudder authority increases rapidly.  
 
In level flight with small sideslip, the yaw rate R required to produce a coordinated turn at a constant 
bank angle (Φ) and an air speed (V0) is:  
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The circle radius (rc) of the coordinated turn is: 
Φ

=
tancos

2
0

γg
V

rc    (2.11.9b) 

 
When the flight control system receives a roll rate command in stability axes, a coordinated turn 
system applies a feedback signal from bank angle (Φ) and the velocity (V0) to the yaw rate (R) as 
defined in equation (2.11.9). This loop allows the vehicle to achieve its commanded roll rate, 
otherwise, without the turn coordination feedback it would result in a non-zero steady-state roll rate 
error. 
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If we know ahead of time that the vehicle will be using a turn coordination feed-forward loop it may be 
convenient, for modeling and control design purposes, to include this feed-forward loop in the dynamic 
model instead of including it in the flight control system. After linearization, the perturbations in the 
stability rates as a function of the body rates plus other parameter variations become:  
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Equation (2.11.10) Body to Stability Transformation that Includes Turn Coordination  
 
By including the turn coordination terms of equation (2.11.10) in the control design model and then 
using this model to design feedback gains, the gains “assume” that the vehicle control system has a 
turn-coordination loop already implemented. It separates the two control issues: turn-coordination and 
state-feedback design. This feature is useful for designing gains when the vehicle is at a steady bank 
angle (Φ0). 
 
In Flixan vehicle modeling program the "stability axes output" and the "turn-coordination logic" are 
options that can be selected in the input data. When the “stability axes” option is turned on, and the 
“turn-coordination” is not included, the term (r') in equation (2.11.10) becomes equal to (rb), of 
equation (2.11.8). The analyst must be careful to avoid double-booking of the turn-coordination logic, 
both in the vehicle model and in the flight control. We typically include these options in the vehicle 
model during control analysis and design, but not in simulations. In simulations we use body axis 
models and include the body to stability transformations plus the turn coordination logic in separate 
blocks, as shown in the examples. 
 
2.11.4 Acceleration Sensed by an Accelerometer 
 
Normal, lateral and axial accelerometers are used to measure the vehicle translational accelerations 
along the z, y, and x axes respectively. Accelerometer feedback is used by the flight control system to 
regulate speed and to provide load-relief in order to protect the vehicle structure from excessive 
aerodynamic loading. It is also used to control the angles of attack and sideslip, and the rate of descent 
in a reentry vehicle. Excessive aero-loading due to alpha and beta may be catastrophic especially at 
high dynamic pressures. The aero loads are measured in terms of Qα= (Qbar * α). Typically, normal 
and lateral loads should not exceed 3000 to 3500 (psf-deg). In launch vehicles during high dynamic 
pressures, a load relief feedback loop is included in parallel with the attitude control loop in order to 
alleviate structural loading. When the load-relief system is operating the flight control system steers 
the vehicle in a direction that trades-off a certain amount of directional controllability in order to gain 
reduction in normal and lateral loading. The control gains in the load-relief feedback loop are usually 
phased in-and-out, proportionally with the dynamic pressure.  
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The acceleration measured by an accelerometer consists of three components: 
 

• A term due to rigid-body acceleration at the CG 
• Terms due to angular acceleration multiplied with the accelerometer distance from the vehicle 

CG, and  
• Terms that introduce structural flexibility at the accelerometer node  

 
The non-linear equation below describes the accelerometer measurement in 6-DOF simulations. 
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Equation (2.11.11) Accelerometer Measurement in Large Angle Non-Linear Simulation  
 
After linearization, the variations in the accelerometer measurements along the x, y, and z axes from 
steady-state accelerations become: 
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Equation (2.11.12) Accelerometer Measurement for Small Variations Simulation 
 
Where: 
φxacc, φzacc, φyacc Mode shapes of an elastic mode (j) at the accelerometer in (ft/ft), along x, z and 

y axes respectively. 
σYacc , σZacc Modal slopes of an elastic mode (j) at the accelerometer in (rad/foot), in the 

pitch and yaw directions. 
axcg  aycg  azcg  Accelerations at the vehicle CG due to the external forces (no gravity). 
 
The flex terms consist of two components: a term due to the modal accelerations ( jη ), and a term due 
to rotational structural bending coupling with the vehicle acceleration AX. 
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2.11.5 Angle of Attack and Sideslip Sensors 
 
Vane sensors measure the angles of attack and sideslip relative to the airflow, and also the relative 
wind velocity V0. This device is generally a probe sticking out in front of the aircraft. Sometimes it 
consists of tiny holes measuring pressure in different locations near the nose, and from the pressure 
difference a processor estimates the alpha and beta angles. These measurements are often used in 
aircraft as flight control inputs to control the aerodynamic angles (α and β). In launch vehicles they can 
be used instead of accelerometers to provide aerodynamic load-relief at high dynamic pressures.  
 
The measured angles of attack and sideslip (αs and βs), however, are different from the actual rigid-
body angles relative to the airflow (αw and βw), because the measurements are corrupted by vehicle 
rotations, and structural flexibility at the sensor location. The angles of attack and sideslip measured by 
a vane sensor are defined in equations 2.11.13 and the right hand side of the equation consists of the 
following terms: 
 

• The first terms are the actual angles of attack and sideslip (αw and βw) relative to the airflow, as 
defined in section 2.9. 

• The second terms represents measurement errors produced by the body rates and the moment 
arm distance from the vehicle CG. 

• The last two terms introduce errors due to structural flexibility at the sensor. That includes local 
structural bending and translational velocity at the vane node. 
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Equation (2.11.13) Angle of Attack and Sideslip Measurement at a Vane Sensor 
 
where: 
φzv, φyv  are the mode shapes along Z and Y of the vehicle at the vane sensor in (ft/ft) 
σyα, σzß  are the pitch and yaw modal slopes at the vane sensor in (radians/ft) 
ηj  is the modal displacement of mode (j), in (feet) 
lxv lyv lzv  are the distances along x, y, and z, between the vane sensor located in front of the  
  vehicle, and the vehicle CG, (lxv=Xv - Xcg).  
 


