3 Rigid-Body Spacecraft Equations

This section describes the equations of motion
for arigid body spacecraft that is controlled by
reaction control jets (RCS), and also an array
of momentum exchange devices, such as,
reaction wheels (RWA), single-gimbal control
moment gyros (SG-CMG), and double-gimbal
control moment gyros (DG-CMG). Equations
of a spacecraft with rotating appendages are
also included. The Flixan program provides
the capability to implement any spacecraft
configuration consisting of: RCS, RWs,
CMGs, and gimbaling appendages, or any
combination of the above devices. Structural
flexibility can also be included and
implemented as a separate flex system coupled
with the rigid-body model. It requires using the flexible spacecraft modeling program and modal data with
nodes at the actuator and sensor locations, as demonstrated in the examples.

3.1 Rigid Body Spacecraft with Reaction Wheels

Reaction wheels consist of a spinning rotor whose spin axis is fixed relative to the spacecraft and its spin
rate is maintained close to zero. Its speed is increased or decreased to generate a reaction torque about the
spin axis. They are inexpensive but their control torque capabilities are small and are typically used to control
small 3-axes stabilized satellites. Figure 1a shows a typical reaction wheel (RW) with the control electronics.
Its angular rate can be varied by applying a torque to the motor that rotates it about its spin axis. As the
wheel accelerates it applies an equal and opposite reaction torque to the spacecraft that is used to control
attitude. In general, a three axes stabilized spacecraft requires a RW array consisting of at least three reaction
wheels.

Figure 1b represents a rigid-body spacecraft with a RW and an externally applied force F. The spacecraft
origin is at the CG. The unit vector a; defines the spin direction of wheel (i). A force vector F; defines an
external force (j), for example, due to an RCS jet firing. The displacement d; represents the distance between
the force F; application point, and the vehicle CG (assuming the mass properties include the wheels). By
combining the reaction wheel assembly (RWA) spin column vectors a; together we can create a

transformation matrix C? that transforms the wheel momentum from individual wheel axis to spacecraft

body axes (X, y, z). For example, if we are using four reaction wheels the transformation from wheel to body
is shown in equation 1.1. The transformation from body to wheel is the pseudo-inverse of C®.

Ci=[a, a, a, a,] (1.1)
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The following equations describe the non-linear dynamics of a spacecraft with reaction wheels and reaction
control jets that can be used for large angle simulations. The rate of change of system momentum (total
momentum of spacecraft plus wheels) is not affected by the internal wheel control torques but it is only
affected by the external torques due to disturbances or the RCS jets torques.

Hyo =-o, xHy + Ty System Angular Momentum Rate w2

Tex: is the sum of all external moments applied to the spacecraft. It consists of three terms: aerodynamic
disturbance torques Tp, gravity gradient torques Tcg, and also the control torques generated by the reaction
control jets Ercsj).

—RCS(j)
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Figure 1a Typical Reaction Wheel with Control Electronics

When the spacecraft has an orbital rate mo (rad/sec) the gravity gradient torque is a function of the LVLH
Euler angles (¢, 6, ), as described in equation 1.4.

—sin@cosy
Tee =3w2(cxJ,c) , c=| cosgsin@siny +singcosd (1.4)
—singsin @siny + cos ¢ cos
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The spacecraft with reaction wheels model can be implemented in two forms. In the simplest form the
momentum of the reaction wheel array is calculated in the body frame. This model does not keep track of the
individual wheel speeds and it does not calculate the torque produced by each individual wheel on the
vehicle. Only the combined RWA torque is calculated, which is fine if the wheels are collocated. The
following equation calculates the spacecraft rotational acceleration  as a function of the RWA internal
torque vector Ty and also the external torques Text. The second equation calculates the rate of change in RW
momentum as a function of the torque generated by the wheels, which is opposite to spacecraft torque.

JVQ =—wWX ‘]vQ+IRW +Iext

hb +oxh, =-Tg,

Spin
b3 direction &

/ Reaction
' Wheel
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Figure 1b Spacecraft with a Reaction Wheel and an External Force

Where:

hp is the RW array momentum in the spacecraft body frame.
Trw  is a vector of RW torques in spacecraft body axes

Text is the external torques applied to the spacecraft in body axes
Jv is the spacecraft moment of inertial dyadic
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The combined system momentum Hsys consists of the spacecraft momentum plus the total wheel momentum.
During maneuvering the RW momentum varies significantly but the system momentum is maintained small
by frequent momentum dumps. In the absence of external torques the system momentum is constant and
close zero.

b
ﬂsys = ‘]ch + hb ’ bb = Cw hw (1.6)
The torque applied to the spacecraft body axes by the reaction wheels array is
-I_-RW - CWIWI _Qxhb (1.7)

Where the first term is due to the torque generated by the motors that accelerate the wheels and the second
term is a gyroscopic torque due to coupling between the spacecraft rate ® and the combined wheel
momentum hy. The spacecraft rate of change of momentum under the influence of an array of RW torques
and the external torques is obtained from equation 1.8

Jo=-—oxJ,o+Tq +T .
COT. +T (1.8)

‘JVQ_ a)XHsys wowi T Lext

The inertial rate of change of the i"" RW momentum about its spin axis is
hwi = Twi (19)

If you assume that the system momentum is zero, the equation simplifies to

Hyo=1J a)+CWhWI 0

—ext

The measured angular rate of the i reaction wheel relative to the spacecraft is equal to its inertial rate minus
the spacecraft rate resolved in the wheel spin axis, that is

h . T
W, =—"-a,®

wi

(1.11)

The reaction torque applied to the spacecraft body axis Towi by each individual i"" RW is a combination of
the motor torque Twi applied to the wheel about its spin vector awi, plus the gyroscopic torque due to the

coupling between the wheel momentum and the spacecraft rate w, equation 1.12. This torque can be used to
excite structural flexibility at each wheel.

IbWI_ QWIT _ngmh (1.12)
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The Euler angles are measured relative to the rotating LVLH frame,

é . cosy —cosgsiny  singsiny 0
0 |= cosy 0 CoS ¢ -Sing  |o +| o, (1.13)
W 0 singcosy  COS¢@CoSy 0

Where:

Mo is the orbital rate

Jw is the individual wheel moment of inertia about their spin axis

Jy is the spacecraft inertia and it includes the weights of the reaction wheels.

The matrix Jw is diagonal consisting of the individual wheel inertias about their spin axis. It is assumed that
the vehicle mass properties and inertias matrix (Jv) include the weights of the reaction wheels. The non-
linear reaction wheel equations described above are not used in the Flixan program. The Flixan equations are
all linearized at fixed steady-state conditions. The linearized dynamics of a spacecraft with reaction wheels
are presented in the following section. In the examples section, however, we have included some large angle
spacecraft modeling examples with reaction wheels and reaction control jets, using the above non-linear
equations implemented in Matlab/ Simulink programs.

1.1 Linearized Equations for an Orbiting Spacecraft with Reaction Wheels and
Momentum Bias

The following equations are obtained by linearizing the previous equations relative to the LVLH frame. We
assume that the spacecraft has a steady pitch rate that is equal to the negative orbital rate -.. Equation 1.14
calculates the rate of change of angular momentum as a function of RW and external torques. The roll, pitch
and yaw attitude is measured relative to the LVLH frame.

Lo Ixy Dz | @x 'z 21y, lzz =l |[ @

Iy Iy | oy |=a, -1y 0 yy Wy

e Lz lz \@; Ly = T _ZIXY —ly Wy

Izz - IYY IXY 0 ¢ _ZIYZ (1.14)
2 2
+3a?| |y I, =l O 0 |+0] Blyy |+Taw + D Teu
— Iy —ly; 0\w — Iy

1. The first term on the right side is the linearized o x Jowterm.
2. The second term on the right side is the gravity gradient torque which is a function of attitude.
3. The third term is a bias torque due to the linearization caused by the products of inertia.
4. Trw is the RW array control torques in body axes, and
5. Text IS other external torques.



The rate of change of momentum of the i reaction wheel about its spin axis is equal to the torque applied to
the i wheel

hi =T (1.15)

The torque applied to the spacecraft by the reaction wheels array in body axes is
_ b b b
Tow =—CuT,i—@yxCih, —oxCih,, (1.16)

W — Wi
Equation 1.17 calculates the rate of change of RW momentum resolved in the spacecraft body axes. Where:

(mxo0, ®vo, ®z0) is the nominal (steady-state) spacecraft rate and [Hxo, Hyo, Hzo] is the nominal momentum
of the combined RW array.

hx a)XO hx a)x H X0
h, Wz, h, @, H,

(1.17)

The measured angular rate of the i wheel relative to the spacecraft w; is equal to its inertial rate minus the
spacecraft rate resolved along the spin axis of the i wheel, that is
hWi T
W, =— —4a,u (1.17)
Wi
The reaction torque applied to the spacecraft body axis Towi by each individual i RW is a combination of
the motor torque Twi applied to the wheel about its spin vector ai plus the gyroscopic torque due to the

coupling between the wheel momentum and the spacecraft rate. It can be used to excite structural flexibility.

Towi == Twi — @ xa,N, —@xa,h,, (1.18)
Where:

o is the nominal spacecraft body rate about X, y, z axes: wxo, ®vo, ®zo

®x, Oy, Oz is the variation in vehicle rate.

Hxo, Hyo, Hzo is the nominal momentum of the RW assembly in body axes

hx, hy, h; is the variation of RW momentum from nominal in body axes.

Twi is the motor torque vector of n reaction wheel axes: Twi, Twz, ... Twn

hwo is the nominal momentum vector of n wheels: hwo1, hwo2, hwos, ... hwon

awi is the spinning direction unit vector of the i wheel

(o) is the transformation matrix from wheel to body axes
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3.2 Spacecraft with Single Gimbal CMGs

A single gimbal control moment gyroscope (SGCMG) is shown in Figure 2.1. It consists of a spinning rotor
that is mounted on a structure that can be gimbaled perpendicular to the rotor axis. The rotor spin rate is
maintained at a constant speed by a small motor that produces a constant angular momentum h. It is the
precession of this vector that produces a useful output torque that is substantially greater than a reaction
wheel torque, and for this reason it is very attractive in applications that require high torque and in fast
maneuvering or agile spacecraft. The direction of the spinning rotor and hence the flywheel momentum can
be rotated relative to the spacecraft by a stronger motor and a gimbal. The gimbal motor controls the
gimbaling rate, and hence the output torque. By commanding the gimbal to rotate, by means of a servo
system that receives rate command from the steering logic, high precession torques are generated by
changing the orientation of the angular momentum vector. The reaction torque on the spacecraft T is equal
and opposite to the rate of change in momentum vector h, which is orthogonal to the momentum vector h
and also to the gimbaling vector according to the right hand rule. However, the torque direction at any
instant is a function of the gimbal position. The SGCMG essentially acts as a torque amplification device
because the output torque magnitude is equal to the CMG momentum multiplied by the gimbal rate. In
addition, this does not require very much power, because, a small input torque from the gimbal actuator
produces a much greater torque in a plane formed by the rotating momentum vector.

2.1 CMG Array Geometry

Spin
P h Control Moment Gyro
(CMG)

~ - *
Gimbal axis

”
”

Torque .~~~ | [I—"

AxiskT

T=h=wxh=o%h

Figure 2.1a Single-Gimbal Control Moment Gyro
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Figure 2.1b Single Gimbal Control Moment Gyro
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This large torque amplification plus their capability of storing large amounts of angular momentum over
long periods of time makes them especially advantageous as attitude control actuators for agile space
spacecraft that require fast maneuvering, and high precision. They are also used in large space structures,
such as a space station. Single-gimbal and double-gimbal CMGs have been used for attitude control of the
Skylab, the MIR and the International Space Station (ISS). Another attractive feature of CMGs compared
with reaction wheels is that the rotor in a CMG spins at a constant rate which places the vibrations at known
frequencies while in a RW, the rotor speed changes, thus, exciting the spacecraft structure in multiple
frequencies which may not be desirable in precision applications. CMGs, however, are complex systems,
expensive, and require complex controls with singularity avoidance algorithms.

Figure 2.2 shows the local coordinates of a Single Gimbal CMG vectors which are defined relative to the
spacecraft axes. They are the Gimbal, Reference, and Quad axes (m, r, g) which are fixed relative to the
spacecraft. The Gimbal (m) is the axis perpendicular to the plane about which the rotor is gimbaled by the
servo. Ref () is the direction of the spin vector when the gimbal angle &; is zero. The spin or momentum
vector remains always in the plane at any gimbal angle &i. Quad (q) is the quadrature formed by the cross-
product of the Gimbal and Ref axes.

The momentum of one CMG about the Gimbal, Output, and Spin axes can be calculated in the CMG axes as
a function of the spinning rotor momentum and the spacecraft rotation rate in CMG axes.

h N

h, |=| J,(¢coss—6sins) 2.1)

h hy +J,(0cos s + gsin )

S

Equation 2.2 calculates the rate of change of momentum by one CMG which is the moment generated by the
CMG in the Gimbal, Output, and Spin axes respectively as a result of gimbaling and base motion. The
Gimbal axis is fixed, but the Spin and the Output torque axes vary as a function of the gimbal angle.

Mg T,

M, |= Jo(géﬁ'cosé—gz}é'i sind — 65, cos s —fsin 5)+ hs, +8,(J, - J, )(écos5+¢5sin 5)

M, \]S(£'2+éc055+;}5sin5+¢5§'i oSS — 65, sin 5)+ S, (Jg —JO)(gzicos(S—ésin 5)
Equation 2.2 SGCMG Momentum along the: Gimbal, Output, and Spin axes

The torques in the Spin and the Output axes vary as a function of the gimbal angle 8. The reaction torque
that is applied on the spacecraft is in the opposite direction [-Mg, -Mo, -Ms]. Note that the angular rotation
of the spacecraft couples with the stored CMG momentum vector and produces additional torque at the
interface. The rotational body rates of the spacecraft can be converted to rates about the reference
coordinates axes of each CMG. If o is the spacecraft roll, pitch and yaw body rate vector (ox, ov, ®z),
equations 2.3 resolve the spacecraft rates about the CMG axes: (r, g, m). 8 and ¢ are the spacecraft rates

resolved about the CMG reference and quad axes. The gimbal inertial rate ,, consists of: the gimbal rate
relative to spacecraft 5 plus &which is the spacecraft rotational rate resolved about the CMG gimbal vector.
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0 = w, COSy + @, Siny
¢ =-w, cos Bsiny + @, cos BCOSy + w, Sin

&= w, sin #siny —w, sin fcosy + w, cos B (2:3)
S, =0+¢

Where:

Jg is the CMG moment of inertia about its gimbal axis

Jo is the CMG moment of inertia about its output axis

Js is the CMG moment of inertia about its spin axis

Tgi is the torque applied by the torque motor at the gimbal

0; is the inertial angular acceleration of the rotor about the gimbal including spacecraft
o is the CMG gimbal rotation about the m axis measured from the Ref axis

ho is the constant CMG momentum about its spin axis (Is€2)

Q is the rotor spin acceleration

0 is the vehicle rate about the CMG reference r axis

é is the vehicle rate about the CMG quad g axis

é is the vehicle rate about the CMG gimbal m axis

The following projection matrix P in equation 2.4 transforms the CMG torques from CMG reference
frame to the spacecraft (x, y, z) axes.

M, sin#siny  —sindcosy —CcoSdCos fsiny  COSOCOSy —sindcos Asiny (Mg
M, |=|-sinfcosy —sindsiny+Ccosocosfcosy cosdsiny +sindgcospcosy || M
M, cos S cososin g singsin g M,

Equation 2.4 CMG Reference to Spacecraft Transformation Matrix

When a spacecraft is controlled by CMGs at least three CMGs are needed to provide 3 axes control. If we
consider an array of SGCMG mounted on the surfaces of a pyramid with their gimbal axes directions (m;)
perpendicular to one of the surfaces of the pyramid and the momentum direction (h;) always aligned with the
surface of the pyramid as the gimbal &; rotates. The output torque from each CMG is equal to the rate of
change of angular momentum which is in the (m; x h;) direction and proportional to the gimbal rate &, . From

the pyramid surfaces orientations we can calculate three important matrices that will be used in the equations

of motion.
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Figure 2.2 Orientation of a CMG in Spacecraft Coordinates

Let us consider a SGCMG pyramid arrangement shown in Figure 2.4b, where the spacecraft has four
SGCMGs mounted onto the four faces of the four sided pyramid. All CMGs have the same constant angular
momentum ho=1200 (ft-Ib-sec). Their CMG momentum vectors h; are initially (at zero gimbal, 60i=0)
parallel to the spacecraft X-Y plane producing zero total momentum. Their momentum vectors are
constrained to lay parallel to the surface of the pyramid and they can be continuously rotated about the
gimbal vectors &i, which are perpendicular to each surface. The orientation of each CMG relative to the
spacecraft is shown in Figure 2.4b. The pyramid angle 3 is 68°, and the yi angles of the four surfaces
according to Figure 2.2 are: 90°, 180°, 270°, and 0°. We can create the 3x4 gimbal to body transformation

matrix M g by stacking together the four gimbal direction column unit vectors m; as shown in equation 2.5.

sin S, siny,
Mg ZM1 m, m m4]Wherei m; =| —sin f; cosy;
cos 3,
sing 0 —sing 0 0927 0 -0.927 0
Mo=| 0 sing 0 -sing|=| 0 0.927 0 —-0.927

cosp cosp cosp cosp 0.375 0.375 0.375 0.375
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O is the CMG gimbal axis direction
h s the initial CMG momentum direction
he is the initial CMG torque direction

Figure 2.4 Arrays of five and four CMGs in Pyramid Configuration
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Similarly, we create the 3x4 reference directions matrix R by stacking together the initial directions unit
vectors ri of the momentum vectors h; when the gimbal angles are zero, d0i=0. In this orientation the initial
gimbal angles produce zero momentum bias.

COSY; 0 -1 0 1
R=[r, r, ry r,Jwhere:r,=|siny, |; R=[1 0 -1 0 2.6)
0 0O 0 0 O

We must also define a third 3x4 Quad-matrix Q that contains column vectors of the cross product direction
unit vectors g;.

Q=la, a, a, a,]; a=(mxr);
-0.375 0 0.375 0]

Q= 0 -0.375 0 0.375
0.927 0.927 0.927 0.927

(2.7)

Gimbal
Servo

Position
Resolvel

Figure 2.6 A Single-Gimbal Control Moment Gyro and a Cluster of four Single Gimbal CMGs mounted on a pyramid
structure which is isolated from the spacecraft by means of disturbance isolation struts

Notice, that the pyramid structure is only used for visualization. The CMGs do not have to be physically
mounted on the four surfaces of an actual pyramid, as in Figure 2.4, but they can be translated anywhere on
the spacecraft as long as their gimbal axes (m;) and their reference momentum vectors (r;) are parallel to the
directions shown in the pyramid. See, for example, the CMG cluster in Figure 2.6. The CMGs are typically
mounted on a structure that it is mechanically isolated from the spacecraft by means of vibration isolation
struts, as shown in Figure 2.6, that attenuate mechanical vibrations from the CMGs.
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2.2 Controlling a Spacecraft with an Array of SGCMG

In order to generate the required torques that will control the spacecraft by using an array of Single Gimbal
CMGs itis necessary to develop a steering logic. An optimal steering logic is one that maneuvers the CMG
gimbal rates to generate spacecraft torques that are equal to the commanded control torques. However, one
of the principal difficulties in using SGCMGs for spacecraft attitude control is the geometric singularity
problem in which no control torque is generated for the commanded gimbal rates. The development of a
SGCMG steering logic must also consider the avoidance of the singularities. The equations are similar to the
reaction wheels, the combined spacecraft plus CMG rate of change of momentum is not affected by the
CMG torque but it is affected only by the external torques.

H sys +Qxﬂsys :-I_-ext (2.8)

Where:

Hsys  is the combined CMG plus spacecraft system momentum,
Text IS the external torque vector and

[0 is the spacecraft angular rate.

By introducing the internal CMG torque we separate the spacecraft and CMG rate of change of momentum
equations and solve for the spacecraft rate o as a function of internal plus external torques.

Jo=-0oxJ,o+T ., +T

cmg | ext
! _ (2.9)
ﬂcmg T X ﬂcmg - _Icmg
Where: the total system momentum consists of spacecraft plus CMG momentum.
ﬂsys = ‘]vQ + ﬂcmg (2.10)

The internal CMG torque Tcmg applied to the spacecraft is equal and opposite to the torque applied to the
CMG array. It consists of two terms: the control torque Tcon intended to control the spacecraft which is also
the rate of change in the CMG momentum plus a component that cancels the gyroscopic torque ox H . .

Tcmg = Tcon —wxH cmg (2.11)

The control torque Tcon is a non-linear function of the gimbal angles and gimbal rates. It is the rate of change
in GMG Momentum.

Tcon = _[A(é‘)]é - _H cmg (2.12)
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The angular momentum vector of the entire CMG array in body axes Hcemg is Obtained by combining the
individual CMG momentum vectors. Each CMG momentum vector was defined in CMG axes: Gimbal,
Output, and Spin axes from equation 2.1, and each must be transformed to spacecraft axes using the
following transformation matrix.

Ncmg hG
Hcm = I:)I h
o .2:1: ° (2.13)

Where: matrix P; transforms the i CMG momentum from (Gimbal, Output, Spin) axes to spacecraft axes.
sinfgsiny  —sindcosy —Cc0So Cos Asiny  COSoO CoSy —Sin o cos gsin y
P.=|—sinfcosy —sindsiny+Cco0sdcosScosy Cosasiny +Ssin o cos B cosy
cos cososin g sindsin g

A simplified model can be obtained when we ignore the momentum about the CMG gimbal and output axes,
because they are small, and consider only the CMG momentum about their spin axes. The combined CMG
angular momentum vector is calculated from equation 2.14, as a function of the individual CMG
momentums hoi and the gimbal angles which define the spin axis orientations.

Nemg
ﬂcmg = Z (COSé‘i r; +3In 5| ﬂi ) hOi (2.14)

i=1

Also, by combining equations 2.9 and 2.12 we can rewrite equation 2.9 in terms of only the control torque
instead of the total CMG torque Tcmg as shown in 2.15. Teon IS the steering torque designed to shape the
spacecraft rate as commanded by the Attitude Control System. Equations 2.14 and 2.15 can be used instead
of 2.9 in simple 6-dof simulations that do not require gimbal torque dynamics and coupling with structural
flexibility.

I o+(@xH

H -T

—cmg — —con

) = TCOFI + Iext

sys

(2.15)
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Otherwise, we calculate the control torque from each CMG in the Gimbal, Output and Spin axes and
transform it from CMG axes to spacecraft axes. Then they are combined to form the total CMG torque
in body axes.

Nemg M G
Icmg = Z Pl IVIO
= M . (2.16)
Where:
M G Tgi

M, |= JO(¢'5cos5—¢55i sin g — 65, cos5—ésin5)+ h,d, +6,(J, —Jg)(9c035+¢53in5)
M JS(Q+6'5coso"+¢'sin5+¢55'i cos S — 65, sin5)+5i(Jg —JO)(écosé—ésiné)

For a more accurate calculation of the CMG momentum Hemg that includes also the effects due to the gimbal
torques we may integrate equation 2.9 using Tcmg from equation 2.16. The matrix A used in equation 2.12
relates the gimbal rates to rate of change in CMG momentum which is the control torque. It is a time varying
3xNemg matrix consisting of Nemg column vectors a;, Its elements ajare related to the Ref and Quad vectors r;
and gi of each CMG and they vary with the positions of the gimbal angles oi.

As)=(a, a, a, a,) where:

a; = (0035i gq. —sing, L)hm (2.19)

Si is the gimbal angle for CMG (i)

i is a unit vector of the initial momentum direction for CMG (i)

m; is a unit vector of the gimbal direction for CMG (i)

Qi is the orthogonal direction (mi x r;) for CMG (i)

Teon IS the control torque applied to the gimbal by the motor

Tgi is the gyroscopic torque —wx H,,, resolved in gimbal (i) direction

M? s the (3 x 4) transformation matrix from gimbal axis to body axis

hoi is the constant momentum of the i CMG about its spin axis.
Ncwme 1S the number of CMGs used.
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The CMG gimbal rates are controlled by servo systems that generate gimbal torques Tgi. The servo torque at
the gimbal of each CMG is also counteracting the gyroscopic disturbance torque created by the spacecraft

rates@ and ¢ resolved about the CMG reference and quad axes, as defined in equation 2.3. Ignoring

friction, the inertial acceleration of each CMG gimbal is obtained from the gimbal moment equation 2.20,
where Tyg; is the motor torque applied at each gimbal. Even though the CMG moment of inertia about the
gimbal Jg is relatively small, the @ x h, gyroscopic moment produced by the CMG momentum coupling with

spacecraft rate is a big torque that requires a powerful gimbal servo-motor in order to be able to achieve the
required gimbal rate.

3,6 +hy, (49, siné— ¢ cosé) =T, (2.20)

In the simple models we can assume that the gimbal rates are equal to the commanded rates 5, = 'Comd(i) .The

relative gimbal angle & for each CMG is obtained by integrating: 5 = 5,, — &

Single Gimbal CMG Steering

The control system calculates the spacecraft acceleration commands @, , and it is the steering control law

that generates the gimbal rate commands that drive the servo system which controls the gimbal rates. The
spacecraft attitude error is used by the control law to calculate the spacecraft acceleration command. The
attitude error is obtained from the quaternion. The quaternion is updated by integrating the quaternion rate
which is a function of the body rate and the previous quaternion, as shown in equation 2.21.

0 w, -0,
: -w, 0 W
_ 05 3 1 2
9 w, - 0 o, 9 (2.21)
o —w, —o; 0

Equation 2.22 is the steering law which is updated at each iteration. It requires the pseudo-inverse of matrix
[A] which is a function of the gimbal angles & and used for calculating the SGCMG gimbal rate commands.
The steering law makes the spacecraft acceleration to be equal to the commanded acceleration.

Sum = ~A"(8)Jyrgn + (@x H,, ) ) where: A" = AT(AAT)

sys
. (2.22)
w = a)com

The development of a CMG steering logic, however, should also consider the avoidance of the singularities.
In the examples section we demonstrate the design of a space station attitude control system using CMGs.
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2.3 Linearized Equations of Spacecraft with SGCMGs

In Section 2.2 we developed a non-linear model of a spacecraft controlled with an array of SG-CMGs. The
following linearized model of a spacecraft with single-gimbal CMGs is applicable for small gimbal
variations relative to the nominal gimbal angle positions (Soz, 302, 03, ... don), and is used mainly for control
analysis. We assume that the spacecraft is in circular orbit of orbital rate @, and its angular acceleration is

obtained from equation 1.14 as a function of variations in the CMG, gravity-gradient, and external torques.

Equation 2.23 calculates the rate of change in CMG momentum, where: (oxo, ®vo, and mzo) are the nominal
(steady) body rates, and (wx, @y, and w;) are the variations in vehicle rates. Similarly, (Hxo, Hyo, and Hzo) is
the nominal (steady) CMG array momentum, and (hx, hy, h;) is the variation in CMG momentum. Temg iS the
reaction torque applied to the the CMG array.

I;]x Wy o hx W, HXO
hy = @y, [x| N, [=] @, |X| Hyg |[=T g (2.23)
hz Wz, hz @, HZO

The CMG torque is mainly due to the precession of momentum ho coupling with the gimbal rate Si .Italso

has components due to the spacecraft rates from equations 2.3 and the gimbal angle &o. It is converted to
spacecraft axes by the transformation in equation 2.4. Equation 2.24 combines the contributions from all
CMGs to calculate the total torque.

Nemg Tgi
Temg =— 2P|y 6 + (JS -J, )(90 C0S J, + ¢, Sin 50)5i

= (J .- Jo)(¢50 €0s 8, — 6, sin 50)5i (2.24)

The inertial gimbal acceleration in equation 2.25 is a function of the gimbal torque applied by the servo plus
gyroscopic terms due to the CMG momentum ho coupling with the spacecraft rates. It is obtained by
linearizing equation 2.20.

360 =Tg —hy, (6, c0s 8, 5 + g, 5in 8, 5 +5in 5,6 — cos 5,9 (2.25)

The gimbal angle & for each CMG relative to the spacecraft is obtained by subtracting the spacecraft rate
from the inertial gimbal rate and integrating equation 2.26 which calculates the spacecraft rates resolved
about the CMG coordinate axes. The gimbal servo system must be capable of providing the necessary torque
Tgi in order to control the gimbal rate as commanded by the steering logic. The steering logic converts the
torque commands from the attitude control system to gimbal rate commands. By accurately controlling the
gimbal rates, the CMG array achieves the required control torques

3-18



5=6

(=0,

0=, CosSy +aw,siny

n_éé

sin Bsiny —w, sin fcosy + w, Cos
(2.26)

¢ = -, Cos Bsiny +m, cos fCOSy + @, Sin

Where:

S
do

)

¢
0,¢
0o b,

is the inertial acceleration of a gimbal

is the nominal gimbal angle of a CMG (assumed constant in linear model)
is the small variation of a CMG gimbal angle from &g
is the variation in spacecraft rate about the gimbal axis m

are the variations in spacecraft rates about the r and g axes
are the nominal spacecraft rates about the r and g axes

®xo, ®vo, ®wzo are the nominal spacecraft body rates about X, v, z

®x, Oy, Oz are the variation in vehicle rate about the body axis.
Hxo, Hvo, Hzo are the nominal CMG array momentum about X, y, z
hx, hy, h; are the variations in CMG momentum about x, y, z.
ho is the CMG constant momentum about its spin axis

The servo system for each gimbal must provide the necessary torque Tq that will regulate the gimbal rate &

according to the gimbal rate command &, received from the steering logic. The steering logic converts the
torque commands from the attitude control system to gimbal rate commands. By accurately controlling the

gimbal

rates the SGCMG array achieves the demanded control torques.
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3.3 Spacecraft with Generic Momentum Control System

Let us consider a spacecraft that is controlled with a centralized Momentum Control System using a cluster
of momentum exchange devices, such as double-gimbal CMGs. A simplified model is to bypass the steering
logic that converts torque commands to gimbal rates and to assume that the control torque is equal to the
commanded torque. Unlike our previous CMG and RW models, this time we will ignore the mounting
geometry details of the individual CMG devices and analyze them as a combined 3-axis momentum
exchange system. This is a simplified approach that can be applied to any 3-axis momentum exchange
system, such as, in a double gimbal CMG array, where there is no direct transfer of gyroscopic torques
between the rotor and the spacecraft through the bearings. In a double gimbal CMG array there is no direct
transfer of gyroscopic torques between the rotor and the spacecraft through the bearings. The torque between
the rotor and the spacecraft is transmitted through the servo actuators which are assumed to be ideal (control
torque is equal to the commanded torque).

The simulation models bypass the steering logic that converts torque commands to gimbal rates. Equations
3.1 calculate the rate of change of angular momentum for the spacecraft and also for the CMG cluster. It
does not include the CMG steering equations. The first equation calculates the rate of change of spacecraft
momentum as a function of the applied CMG and external torques.

J o= —(a) X JSCa)) + T, + T,

Hpy = —(a) x Hepg ) -T 3.1)

c

The second equation calculates the combined CMG momentum in body axes Hemg. It states that the rate of
change of momentum in the CMG cluster is equal to the reaction control torque generated by the CMG
cluster that is applied by the gimbals -Tc. It consists of the combined torque of the individual gimbals
resolved in body axes regardless of how many CMGs are in the cluster. If you add up these two 3.1
equations together the gimbal torque Tc disappears, and you end up with the conservation of system
momentum equation.

For an orbiting satellite with orbital rate wo, the Euler angles relative to the rotating LVLH frame are
obtained from equation 3.2.

é . cosy —cosgsiny  singsiny 0

0 |= 0 Cos ¢ —sing |o +| o, (3.2
.| cosy .

W 0 singcosy  CoS¢@Ccosy 0

For more details in using this momentum exchange spacecraft model the user is referred to study our Space
Station example.
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3.1 Linearized Equations of a Spacecraft with DG CMGs in LVLH Orbit

In this simple linearized model we assume that the CMGs are a collocated cluster and not individual units.
The internal CMG steering dynamics and steering logic are not included in the equations. The CMG cluster
generates control torques in the body axes and the CMG momentum is calculated in the spacecraft axes. The
spacecraft x-axis is along the velocity vector, the z-axis is pointing towards the earth, and its attitude is
measured relative to the Local-Vertical-Local-Horizontal frame. For small attitude deviations from the
average LVLH attitude the rate of change of spacecraft angular momentum is given in equation 3.3.

Ixx IXY Ixz d)x I><z 2|YZ Izz_lw Wy
Iy T by oy |=0, -1y 0 |y wy
Ixz IYZ Izz d)z IYY_IXX _2|XY _Ixz w7
Izz o IYY IXY 0 ¢ _2IYZ (33)
+302| |y l,, =l Of 0|+ 3l [+T.+T,
— Iy —ly; 0\w — Iy

Where: the second term on the right side is the gravity gradient torque. The products of inertia cause
additional bias torques. The attitude kinematics become

¢ a)ol// + a)X
0|=| o,+o, (3.4)
W - a)o¢ + @,

The change in CMG momentum in body axes is calculated by integrating the following equation
hcmg = _(QO X hcmg )_ (Q X ﬂo ) - IC (3.5

Where: Qo is the spacecraft average, steady-state rate. The second term is due to coupling of the spacecraft
rate with the nominal CMG momentum Ho. If we assume that the steady-state spacecraft rate is in pitch and
equal to (-wo), which is the negative orbital rate, the variation in CMG momentum equations become.

I;]x =w,h, +@, Hyy—ay H,o =Ty
hy ==, Hy,+ oy, Hyp = Tey (3.6)
h, =—w,hy +o, Hy, —w, Hy —Tg,

Where: Tcx, Tey, Tcz are the roll, pitch, and yaw control torques.
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3.4 Spacecraft with Gimbaling Appendages

The following equations describe the motion of a spacecraft that has Ngimb gimbaling appendages attached to
the main spacecraft body that may be rigid or flexible. The motion of the attached bodies is dynamically
coupling with the spacecraft bus by the reaction torques generated when the gimbals are pivoting. There are
two approaches to model this type of spacecraft configuration.

Using H-parameters

The first and easier approach is to use the H-parameters matrix which couples the gimbal motion with
flexibility. In this case the vehicle mass-properties include the appendage bodies and the structural modes
are calculated with the gimbals locked. They are released in the equations of motion by the introduction of
the inertial coupling coefficients matrix Hp. Equation 4.1 calculates the gimbal acceleration relative to the
spacecraft as a function of the gimbal torque Tgi and the interaction with the flex modes. Hp is the H-
parameters matrix that is calculated from the mass-matrix of the finite elements model.

l,a+H =T, (.1)

Equation 4.2 describes how the flex mode generalized displacements (n) are excited by the external forces
and torques and also by the gimbal accelerations via the H-parameters.

(.. ) 2 ) .. T Fext
Mg Q+2§QQ+QQ+Hpg:® T (4.9)

ext

Using Reaction Forces and Torques

The second approach of describing the motion of a spacecraft with gimbaling appendages is to assume that
the appendages are rigid and they are attached with hinges to the main spacecraft body that may be flexible.
The pivoting of the rigid appendages excites both rigid and flex spacecraft motion. In this case the structural
modes of the spacecraft core body are generated without the appendages, and its mass properties should not
include the appendage weights and inertias because their effects are introduced by the reaction forces and
torques. The motion of the attached bodies is coupling with the spacecraft bus by the action/ reaction forces
and torques generated when they are pivoting.

Equation 4.3 calculates the inertial rotational acceleration of an appendage about its hinge generated by the
hinge torque Tgi. Where: |, is the moment of inertia of the appendage body about its pivot.

l,a=T, (4.3)

The rotational rate of a gimbaling body relative to the spacecraft ¢, is obtained from equation 4.4, by
subtracting the spacecraft rate resolved about the hinge vector (h;), from the inertial gimbal rate ¢,

a, =a, _(Qb .hi) (4.4)
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Equation 4.5 calculates the reaction force on the spacecraft at the i gimbal generated due to the inertial
rotational acceleration ¢, of the appendage body about the gimbal and also the spacecraft acceleration
resolved in the hinge direction. Where: li is the distance vector from the i" pivot to the appendage CG, and di
is the distance vector between the spacecraft CG and pivot (i). Fs is the combined force from all gimbals
motion that drives the rigid body dynamics.

Fyi=m, [(L xh; )Qi _(Qi xh; )(Q.hi )]

N

F, = i"l"ngi (4.5)

Equation 4.6 calculates the combined torque on the spacecraft due to the individual gimbal torques Tgi of
Ngimb Slewing appendages, where h; is the direction of the i hinge vector. It is used to drive the rigid body
dynamics

N

Isc == imb(-rgi hi ) (4.6)

i=1

Equation 4.7 is the torque on the spacecraft generated by the gimbal reaction forces combined.
Ngimb

Igr = Z(g| ><Egi) (4-7)

i=1

Equation 4.8 is the structural flexibility equation. The generalized flex mode displacements (n) are excited
by external forces and torques (F and T) which include external forces and torques in addition to the forces
and torques generated at the gimbals.

. . F
MG@JFZGVQT’QZQ)ZCDT T (4.8)

Where:

is the moment arm between the pivot (i) and the appendage center of mass

di is the moment arm between the spacecraft cg and the appendage pivot (i)
n is the Generalized Displacement vector for N modes

Mg is a diagonal matrix consisting of the generalized masses of N-modes

Q is a diagonal matrix of N-mode frequencies in (rad/sec)

F, T  are external forces and torques that excite the bending equations

Hp is the H-parameters (Nmod x Ngimb) matrix for the gimbaling bodies

d is the mode shapes matrix at the excitation points

hi is the direction unit vector for hinge (i)
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3.5 Generating Spacecraft Models with Flixan

In this section we will demonstrate how to generate linear spacecraft systems using the Flixan Flight VVehicle
Modeling program. We begin with a Space Station model that is controlled by a centralized momentum
control system. Then we will analyze a spacecraft that is controlled with an array of 4 Single Gimbal CMGs.
Our third example is a spacecraft that is controlled by an array of 3 Reaction Wheels and it includes 4
gimbaling appendages.

5.1 Flexible Space Station Model with a Centralized Momentum Control System

The following “Flight Vehicle” dataset was created for a Space Station model that is controlled by a 3-axis
momentum control system such as a cluster of double-gimbal CMGs. In this case we will not model the
detailed CMG steering but use the simple generic model described in Section 3. The Space Station Example
is in folder: “C:\Flixan\Examples\Large Space Station” and the input file that contains the spacecraft data is
in file “SpaceStation.Inp”. This file contains two spacecraft datasets: a rigid and a flexible model, to be
processed by the flight vehicle modeling program.

The title of the flexible vehicle set is “Space Station with RCS and a Double-Gimbal CMG Array” and it
includes the following components: 8 force inputs representing the reaction control thrusters, 3 external
torques for roll, pitch, and yaw, a centralized momentum control system, 3 gyros, 3 rate-gyros, and 4
accelerometers. The input file also includes a dataset of 34 selected flex modes to be combined with the
spacecraft model and other datasets that convert systems to Matlab format. The title of the modal dataset is
also included at the bottom of the spacecraft dataset. The Space Station dataset is shown below.

FLIGHT VEHICLE INPUT DATA ......

Space Station with RCS and a Double-Gimbal CMG Array

1

! The Space Station state-space model is now created using the vehicle modeling program.
! The model uses 8 RCS jets, an array of double-gimbal control moment gyros, 3 rate

! gyros, 3 attitude sensors, and 4 accelerometers. The Station is initialized at the
! Local Vertical Local Horizontal (LVLH) attitude and it has a negative pitch rate

! -0.063 radians/sec which is equal to the orbital rate. The wvehicle rates are with

! respect to the LVLH frame. A constant bias torque 7.40153 (ft-1b) is applied

! in the direction (-0.1969, 0.5963, 0.7781) to represent the steady-state gyroscopic
! and gravity-gradient torgques due to the constant pitch rate

Body Axes Cutput, LVLH Attitude

Vehicle Mass (lb-sec”2/ft), Gravity Rccelerat. (g) (£ft/sec”2), Earth Radius (Re) (£t) ©200.0 32.174 0.20896E+08

Memsnts and products of Inertias Twux, Ivy, Tzz, Iy, Ixz, Iyz, in (lb-sec*2-ft) 0.119416e+9 0.40408e+8  0.110166e+9, 0.476e+7,  0.1216e+7,
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet) 0.0 0.0 0.0

Vehicle Mach Number, Velocity Vo (£t/sec), Dynamic Pressure (psf), Altitude (feet) 0.0 25500.0 0.0001 700000.0

Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax, Ay, Az (ft/sec”2) 0.0 0.0 0.0 0.0

Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec) 0.0 0.0 0.0 0.0

Vehicle Attitude Euler Angles, Phi_o,Thet o,Psi o (deg), Body Rates Po,Qo,Ro (deg/sec) 0.0000 0.000 0.0000 0.0000 -0.063
W-Gust BRzim & Elev angles (deg), or Torgue/Force direction (x,y,z), Force Locat (x,y,z) Torgue 0.196572 -0.55%6376 -0.7781e3

Surface Reference Area (feet®2), Mean Aerodynamic Chord (ft), Wing Span in (feet) 0.0 1.0 1.0

Rero Moment Reference Center (Xmre,¥mre,Zmrc) Tocation in (ft), {Partial_rho/ Partial_ H} : 0.0 0.0 0.0 -0.0

Rero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_g,Ca bet}: 0.0 0.0 0.0 0.0 0.0
Zero Force Coeffic/Derivat (l/deg), Zleng ¥, {Cyo,Cy bet,Cy_r,Cy _alf,Cy p,Cy betdot,Cy V}: 0.0 -0.0 0.0000 0.0000 0.0000
Zero Force Coeff/Deriv (1/deg), Along z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}: 0.0 -0.0 0.0000 0.0000 0.0000
Zero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl _betdot, Cl p, Cl r, Cl_alfa}: 0.0 -0.0 0.0000 0.0000 0.0000
Zero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm alfdot,Cm bet,Cm g, PCm/PV,PCm/Ph}: 0.0 -0.0 0.0000 0.0000 0.0000
Zero Moment Coeffic/Derivat (l/deg), Yaw : {Cno, Cn _beta, Cn_betdot, Cn p, Cn_r, Cn_alfa}: 0.0 0.0 0.0000 0.0000 0.0000
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Number of Thruster Engines,

RCS Jet No: 1

Engine Nominal Thrust,

Upper Right, +X

(20 1b jet)

and Maximum Thrust in (1lb)
Mounting Angles wrt Vehicle (Dyn,Dzn), Maximum Deflections from Mount (Dymax,Dzmax)
Eng Mass (slug)

(for throttling)

Thruster location with respect to the Vehicle Refersnce Axes, Xjet, Yjet, Zjet,

RCS Jet No: 2

Engine Nominal Thrust,

Eng Mass (slug),

Upper Right, -Y

(20 1b jet)

and Maximum Thrust in (lb)
Mounting Angles wrt Vehicle (Dyn,Dzn), Maximum Deflections from Mount (Dymax,Dzmax)
Inertia about Gimbal (lb-sec*2-ft), Moment Arm, engine CG to gimbal (£ft):

(for throttling)

Thruster location with respect to the Vehicle Reference Axes, Xjet, Yjet, Zjet,

RCS Jet No: 3

Eng Massz (=lug)

Thruster location with respect to the Vehicle Reference BAxes, Xjet, Yjet, Zjet, (ft)

RCS Jet Mo: 4 Upper Left, +Y (20 1b jet)

Engine Nominal Thrust, and Maximum Thrust in (lb) (for throttling) :
Mounting Angles wrt Vehicle (Dyn,Dzn), Maximum Deflections from Mount (Dymax,Dzmax) (deg):

Inertia about Gimbal (lb-sec”2-ft), Moment Arm, engine CG to gimbal (ft):

Eng Mass (slug)

Upper Left, +X

(20 1b jet)

Engine Nominal Thrust, and Maximum Thrust in (1lb)
Mounting Angles wrt Vehicle (Dyn,Dzn), Maximum Deflections from Mount (Dymax,Dzmax)
Inertia about Gimbal (lb-sec”2-ft), Moment Arm, engine CG to gimbal (ft):

(for throttling)

(£ft)

(ft)

Include or Not the Tail-Wags-Dog and Load-Torque Dynamics 2

(deg) :
Inertia about Gimbal (lb-sec”2-ft), Moment Arm, engine CG to gimbal (ft):

(deg) :

(deg) :

Thruster location with respect to the Vehicle Refersnce Axes, Xjet, Yjet, Zjet, (£t)
Number of External Terques on the Vehicle

Torque No 1 Direction (x, y, z)

Torque No 2 Direction (x, y, =)

Torque No 3 Direction (x, y, =z)

Double Gimbal Control Meoment Gyre System (3-axes), Initial Momentum (x,y,z) (ft-lb-sec)
Number of Gyros, (Attitude and Rate)

Gyro No 1 Rxis:(Pitch,Yaw,Roll), (Attitude, Rate, RAccelerat), Sensor Locat, Node 2
Gyro No 2 Axis: (Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat, Node 2
Gyro No 3 Axis: (Pitch,Yaw,Roll), (Attitude, Rate, Accelesrat), Sensor Locat, Node 2
Gyro No 1 Axis: (Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat, Node 2
Gyro No 2 Axis: (Pitch,Yaw,Roll), (Attitude, Rate, Accelesrat), Sensor Locat, Node 2
Gyro No 3 Bxis: (Pitch,Yaw,Roll), (Rttitude, Rate, Accelerat), Sensor Locat, Node 2
Number of Accelercmeters, Along Axes: (x,y,z)

Acceleromet No 1 Axis:(X,¥,2), (Position, Velocity, Acceleration), Sensor Loc, Node 2
Lcceleromet No 2 Axis: (X,¥,3), (Position, Velocity, Acceleration), Sensor Loc, Node 2
Acceleromet No 3 Axis:(X,¥,3), (Position, Velocity, Acceleration), Sensor Loc, Node 4
Acceleromet No 4 Axis: (X,¥,3), (Position, Velocity, Acceleration), Sensor Loc, Node 4
Number of Bending Modes

Space Station with RCS and a Double-Gimbal

CMG Array,

34 Modes

: URtX Jet

Throttling
20.0
0.0 R
0.0 0.0
73.7, -185
Throttling
20.0
-90.0 0.0
0.0 0.0
73.7, -185
Throttling
20.0
0.0 0.0
0.0 0.0
-65.6, -185
Throttling
20.0
+50.0 0.0
0.0 0.0
-65.6, -185
0.0
1.0
0.0
0.0 0.0
Rate 0.0
Rate 0.0
Rate 0.0
Attitude 0.0
Attitude 0.0
Attitude 0.0
Locelerat. 0.0
Accelerat. 0.0
Accelerat. 0.0
Accelerat. 0.0

=]

(===

cCooooo

232.
232.
—224.
-224.

cCooooo

18.0

16.0
16.0

cCooooo

The flight vehicle modeling program will process the above spacecraft dataset, including the following
dataset which contains the selected space-station flex modes, and is referenced by its title. It is located in the
same input file and includes frequencies (rad/sec), damping coefficients (), modal mass in (slugs), and
mode shapes and slopes at specific locations. Only the first of the 34 modes is shown. The locations

correspond to the loca