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This section describes the equations of motion 
for a rigid body spacecraft that is controlled by 
reaction control jets (RCS), and also an array 
of momentum exchange devices, such as, 
reaction wheels (RWA), single-gimbal control 
moment gyros (SG-CMG), and double-gimbal 
control moment gyros (DG-CMG). Equations 
of a spacecraft with rotating appendages are 
also included. The Flixan program provides 
the capability to implement any spacecraft 
configuration consisting of: RCS, RWs, 
CMGs, and gimbaling appendages, or any 
combination of the above devices. Structural 
flexibility can also be included and 
implemented as a separate flex system coupled 
with the rigid-body model. It requires using the flexible spacecraft modeling program and modal data with 
nodes at the actuator and sensor locations, as demonstrated in the examples. 
 

 
 
Reaction wheels consist of a spinning rotor whose spin axis is fixed relative to the spacecraft and its spin 
rate is maintained close to zero. Its speed is increased or decreased to generate a reaction torque about the 
spin axis. They are inexpensive but their control torque capabilities are small and are typically used to control 
small 3-axes stabilized satellites. Figure 1a shows a typical reaction wheel (RW) with the control electronics. 
Its angular rate can be varied by applying a torque to the motor that rotates it about its spin axis. As the 
wheel accelerates it applies an equal and opposite reaction torque to the spacecraft that is used to control 
attitude. In general, a three axes stabilized spacecraft requires a RW array consisting of at least three reaction 
wheels. 
 
Figure 1b represents a rigid-body spacecraft with a RW and an externally applied force F. The spacecraft 
origin is at the CG. The unit vector ai defines the spin direction of wheel (i). A force vector Fj defines an 
external force (j), for example, due to an RCS jet firing. The displacement dj represents the distance between 
the force Fj application point, and the vehicle CG (assuming the mass properties include the wheels). By 
combining the reaction wheel assembly (RWA) spin column vectors ai together we can create a 
transformation matrix b

wC that transforms the wheel momentum from individual wheel axis to spacecraft 
body axes (x, y, z). For example, if we are using four reaction wheels the transformation from wheel to body 
is shown in equation 1.1. The transformation from body to wheel is the pseudo-inverse of b

wC . 
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The following equations describe the non-linear dynamics of a spacecraft with reaction wheels and reaction 
control jets that can be used for large angle simulations. The rate of change of system momentum (total 
momentum of spacecraft plus wheels) is not affected by the internal wheel control torques but it is only 
affected by the external torques due to disturbances or the RCS jets torques.  
H H T System Angular Momentum Ratesys b sys ext= − × +ω

   (1.2) 
 
Text is the sum of all external moments applied to the spacecraft. It consists of three terms: aerodynamic 
disturbance torques TD, gravity gradient torques TGG, and also the control torques generated by the reaction 
control jets FRCS(j). 
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Figure 1a Typical Reaction Wheel with Control Electronics 

 
When the spacecraft has an orbital rate ω0 (rad/sec) the gravity gradient torque is a function of the LVLH 
Euler angles (φ, θ, ψ), as described in equation 1.4. 
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The spacecraft with reaction wheels model can be implemented in two forms. In the simplest form the 
momentum of the reaction wheel array is calculated in the body frame. This model does not keep track of the 
individual wheel speeds and it does not calculate the torque produced by each individual wheel on the 
vehicle. Only the combined RWA torque is calculated, which is fine if the wheels are collocated. The 
following equation calculates the spacecraft rotational accelerationω  as a function of the RWA internal 
torque vector Tw and also the external torques Text. The second equation calculates the rate of change in RW 
momentum as a function of the torque generated by the wheels, which is opposite to spacecraft torque. 
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Figure 1b Spacecraft with a Reaction Wheel and an External Force 

 
Where: 
hb  is the RW array momentum in the spacecraft body frame.  
TRW  is a vector of RW torques in spacecraft body axes 
Text is the external torques applied to the spacecraft in body axes 
Jv  is the spacecraft moment of inertial dyadic 
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The combined system momentum Hsys consists of the spacecraft momentum plus the total wheel momentum. 
During maneuvering the RW momentum varies significantly but the system momentum is maintained small 
by frequent momentum dumps. In the absence of external torques the system momentum is constant and 
close zero. 

w
b
wbbscsys hChhJH =+= ;ω          (1.6) 

 
The torque applied to the spacecraft body axes by the reaction wheels array is 

bwi
b
wRW hTCT ×−−= ω        (1.7) 

 
Where the first term is due to the torque generated by the motors that accelerate the wheels and the second 
term is a gyroscopic torque due to coupling between the spacecraft rate ω and the combined wheel 
momentum hb. The spacecraft rate of change of momentum under the influence of an array of RW torques 
and the external torques is obtained from equation 1.8 
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The inertial rate of change of the ith RW momentum about its spin axis is 

wiwi Th =           (1.9) 
 
If you assume that the system momentum is zero, the equation simplifies to 
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The measured angular rate of the ith reaction wheel relative to the spacecraft is equal to its inertial rate minus 
the spacecraft rate resolved in the wheel spin axis, that is 

ωT
wi

wi

wi
i a

J
hw −=          (1.11) 

 
The reaction torque applied to the spacecraft body axis Tbwi by each individual ith RW is a combination of 
the motor torque Twi applied to the wheel about its spin vector awi, plus the gyroscopic torque due to the 
coupling between the wheel momentum and the spacecraft rate ω, equation 1.12. This torque can be used to 
excite structural flexibility at each wheel. 

wiwiwiwibwi haTaT ×−−= ω       (1.12) 
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The Euler angles are measured relative to the rotating LVLH frame, 
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Where: 
ωo  is the orbital rate 
Jw  is the individual wheel moment of inertia about their spin axis 
Jv  is the spacecraft inertia and it includes the weights of the reaction wheels. 
 
The matrix Jw is diagonal consisting of the individual wheel inertias about their spin axis. It is assumed that 
the vehicle mass properties and inertias matrix (Jv) include the weights of the reaction wheels. The non-
linear reaction wheel equations described above are not used in the Flixan program. The Flixan equations are 
all linearized at fixed steady-state conditions. The linearized dynamics of a spacecraft with reaction wheels 
are presented in the following section. In the examples section, however, we have included some large angle 
spacecraft modeling examples with reaction wheels and reaction control jets, using the above non-linear 
equations implemented in Matlab/ Simulink programs.  
 
1.1 Linearized Equations for an Orbiting Spacecraft with Reaction Wheels and 
Momentum Bias 
 
The following equations are obtained by linearizing the previous equations relative to the LVLH frame. We 
assume that the spacecraft has a steady pitch rate that is equal to the negative orbital rate -ω0.  Equation 1.14 
calculates the rate of change of angular momentum as a function of RW and external torques. The roll, pitch 
and yaw attitude is measured relative to the LVLH frame. 
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1. The first term on the right side is the linearized ωω J× term.  
2. The second term on the right side is the gravity gradient torque which is a function of attitude.  
3. The third term is a bias torque due to the linearization caused by the products of inertia.  
4. TRW is the RW array control torques in body axes, and  
5. Text is other external torques.  
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The rate of change of momentum of the ith reaction wheel about its spin axis is equal to the torque applied to 
the ith wheel  

wiwi Th =            (1.15) 
 
The torque applied to the spacecraft by the reaction wheels array in body axes is     
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b
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b
wRW hChCTCT ×−×−−= ωω      (1.16) 

 
Equation 1.17 calculates the rate of change of RW momentum resolved in the spacecraft body axes. Where: 
(ωX0, ωY0, ωZ0) is the nominal (steady-state) spacecraft rate and [HX0, HY0, HZ0] is the nominal momentum 
of the combined RW array. 
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The measured angular rate of the ith wheel relative to the spacecraft wi is equal to its inertial rate minus the 
spacecraft rate resolved along the spin axis of the ith wheel, that is 

ωT
wi

wi

wi
i a

J
hw −=           (1.17) 

The reaction torque applied to the spacecraft body axis Tbwi by each individual ith RW is a combination of 
the motor torque Twi applied to the wheel about its spin vector ai plus the gyroscopic torque due to the 
coupling between the wheel momentum and the spacecraft rate. It can be used to excite structural flexibility. 

00 wiwiwiwiwiwibwi hahaTaT ×−×−−= ωω      (1.18) 

 
 
Where:  
 
ω0   is the nominal spacecraft body rate about x, y, z axes: ωX0, ωY0, ωZ0 

ωx, ωy, ωz   is the variation in vehicle rate.  
HX0, HY0, HZ0  is the nominal momentum of the RW assembly in body axes 
hx, hy, hz   is the variation of RW momentum from nominal in body axes.  
Twi    is the motor torque vector of n reaction wheel axes: Tw1, Tw2, … Twn 
hw0    is the nominal momentum vector of n wheels: hw01, hw02, hw03, … hw0n 
awi    is the spinning direction unit vector of the ith wheel  

b
wC    is the transformation matrix from wheel to body axes 
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A single gimbal control moment gyroscope (SGCMG) is shown in Figure 2.1. It consists of a spinning rotor 
that is mounted on a structure that can be gimbaled perpendicular to the rotor axis. The rotor spin rate is 
maintained at a constant speed by a small motor that produces a constant angular momentum h. It is the 
precession of this vector that produces a useful output torque that is substantially greater than a reaction 
wheel torque, and for this reason it is very attractive in applications that require high torque and in fast 
maneuvering or agile spacecraft. The direction of the spinning rotor and hence the flywheel momentum can 
be rotated relative to the spacecraft by a stronger motor and a gimbal. The gimbal motor controls the 
gimbaling rate, and hence the output torque. By commanding the gimbal to rotate, by means of a servo 
system that receives rate command from the steering logic, high precession torques are generated by 
changing the orientation of the angular momentum vector. The reaction torque on the spacecraft T is equal 
and opposite to the rate of change in momentum vector h , which is orthogonal to the momentum vector h 
and also to the gimbaling vector according to the right hand rule. However, the torque direction at any 
instant is a function of the gimbal position. The SGCMG essentially acts as a torque amplification device 
because the output torque magnitude is equal to the CMG momentum multiplied by the gimbal rate. In 
addition, this does not require very much power, because, a small input torque from the gimbal actuator 
produces a much greater torque in a plane formed by the rotating momentum vector.  
 
2.1 CMG Array Geometry 
 

 
Figure 2.1a Single-Gimbal Control Moment Gyro 
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Figure 2.1b Single Gimbal Control Moment Gyro 
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This large torque amplification plus their capability of storing large amounts of angular momentum over 
long periods of time makes them especially advantageous as attitude control actuators for agile space 
spacecraft that require fast maneuvering, and high precision. They are also used in large space structures, 
such as a space station. Single-gimbal and double-gimbal CMGs have been used for attitude control of the 
Skylab, the MIR and the International Space Station (ISS). Another attractive feature of CMGs compared 
with reaction wheels is that the rotor in a CMG spins at a constant rate which places the vibrations at known 
frequencies while in a RW, the rotor speed changes, thus, exciting the spacecraft structure in multiple 
frequencies which may not be desirable in precision applications. CMGs, however, are complex systems, 
expensive, and require complex controls with singularity avoidance algorithms. 
Figure 2.2 shows the local coordinates of a Single Gimbal CMG vectors which are defined relative to the 
spacecraft axes. They are the Gimbal, Reference, and Quad axes (m, r, q) which are fixed relative to the 
spacecraft. The Gimbal (m) is the axis perpendicular to the plane about which the rotor is gimbaled by the 
servo. Ref (r) is the direction of the spin vector when the gimbal angle δi is zero. The spin or momentum 
vector remains always in the plane at any gimbal angle δi. Quad (q) is the quadrature formed by the cross-
product of the Gimbal and Ref axes.  
The momentum of one CMG about the Gimbal, Output, and Spin axes can be calculated in the CMG axes as 
a function of the spinning rotor momentum and the spacecraft rotation rate in CMG axes. 
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Equation 2.2 calculates the rate of change of momentum by one CMG which is the moment generated by the 
CMG in the Gimbal, Output, and Spin axes respectively as a result of gimbaling and base motion. The 
Gimbal axis is fixed, but the Spin and the Output torque axes vary as a function of the gimbal angle. 
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Equation 2.2 SGCMG Momentum along the: Gimbal, Output, and Spin axes 
 
The torques in the Spin and the Output axes vary as a function of the gimbal angle δ. The reaction torque 
that is applied on the spacecraft is in the opposite direction [-MG, -MO, -MS]. Note that the angular rotation 
of the spacecraft couples with the stored CMG momentum vector and produces additional torque at the 
interface. The rotational body rates of the spacecraft can be converted to rates about the reference 
coordinates axes of each CMG. If ω is the spacecraft roll, pitch and yaw body rate vector (ωX, ωY, ωZ), 
equations 2.3 resolve the spacecraft rates about the CMG axes: (r, q, m). φθ  and are the spacecraft rates 
resolved about the CMG reference and quad axes. The gimbal inertial rate Inδ consists of: the gimbal rate 
relative to spacecraftδ  plus ξwhich is the spacecraft rotational rate resolved about the CMG gimbal vector. 
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Where: 
 
Jg  is the CMG moment of inertia about its gimbal axis 
Jo  is the CMG moment of inertia about its output axis 
Js  is the CMG moment of inertia about its spin axis 
Tgi   is the torque applied by the torque motor at the gimbal  

iδ  is the inertial angular acceleration of the rotor about the gimbal including spacecraft 
δ  is the CMG gimbal rotation about the m axis measured from the Ref axis 
h0 is the constant CMG momentum about its spin axis (IsΩ) 
Ω  is the rotor spin acceleration 
θ  is the vehicle rate about the CMG reference r axis 
φ  is the vehicle rate about the CMG quad q axis 
ξ  is the vehicle rate about the CMG gimbal m axis 
 
The following projection matrix P in equation 2.4 transforms the CMG torques from CMG reference 
frame to the spacecraft (x, y, z) axes. 
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Equation 2.4 CMG Reference to Spacecraft Transformation Matrix 
 
When a spacecraft is controlled by CMGs at least three CMGs are needed to provide 3 axes control. If we 
consider an array of SGCMG mounted on the surfaces of a pyramid with their gimbal axes directions (mi) 
perpendicular to one of the surfaces of the pyramid and the momentum direction (hi) always aligned with the 
surface of the pyramid as the gimbal δi rotates. The output torque from each CMG is equal to the rate of 
change of angular momentum which is in the (mi x hi) direction and proportional to the gimbal rate iδ . From 
the pyramid surfaces orientations we can calculate three important matrices that will be used in the equations 
of motion. 
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Figure 2.2 Orientation of a CMG in Spacecraft Coordinates 

Let us consider a SGCMG pyramid arrangement shown in Figure 2.4b, where the spacecraft has four 
SGCMGs mounted onto the four faces of the four sided pyramid. All CMGs have the same constant angular 
momentum h0=1200 (ft-lb-sec). Their CMG momentum vectors hi are initially (at zero gimbal, δ0i=0) 
parallel to the spacecraft X-Y plane producing zero total momentum. Their momentum vectors are 
constrained to lay parallel to the surface of the pyramid and they can be continuously rotated about the 
gimbal vectors δi, which are perpendicular to each surface. The orientation of each CMG relative to the 
spacecraft is shown in Figure 2.4b. The pyramid angle β is 68°, and the γi angles of the four surfaces 
according to Figure 2.2 are: 90º, 180º, 270º, and 0º. We can create the 3x4 gimbal to body transformation 
matrix b

gM  by stacking together the four gimbal direction column unit vectors mi as shown in equation 2.5. 

[ ]
















−

−
=
















−

−
=
















−==

375.0375.0375.0375.0
927.00927.00
0927.00927.0

coscoscoscos
sin0sin0
0sin0sin

cos
cossin

sinsin
:4321

ββββ
ββ

ββ

β
γβ

γβ

b
g

i

ii

ii

i
b
g

M

mwheremmmmM

 (2.5)



3-12 

  
 

 

 

Figure 2.4 Arrays of five and four CMGs in Pyramid Configuration 
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Similarly, we create the 3x4 reference directions matrix R by stacking together the initial directions unit 
vectors ri of the momentum vectors hi when the gimbal angles are zero, δ0i=0. In this orientation the initial 
gimbal angles produce zero momentum bias. 
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We must also define a third 3x4 Quad-matrix Q that contains column vectors of the cross product direction 
unit vectors qi.  
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Figure 2.6 A Single-Gimbal Control Moment Gyro and a Cluster of four Single Gimbal CMGs mounted on a pyramid 
structure which is isolated from the spacecraft by means of disturbance isolation struts 

 
Notice, that the pyramid structure is only used for visualization. The CMGs do not have to be physically 
mounted on the four surfaces of an actual pyramid, as in Figure 2.4, but they can be translated anywhere on 
the spacecraft as long as their gimbal axes (mi) and their reference momentum vectors (ri) are parallel to the 
directions shown in the pyramid. See, for example, the CMG cluster in Figure 2.6. The CMGs are typically 
mounted on a structure that it is mechanically isolated from the spacecraft by means of vibration isolation 
struts, as shown in Figure 2.6, that attenuate mechanical vibrations from the CMGs. 
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2.2 Controlling a Spacecraft with an Array of SGCMG 
In order to generate the required torques that will control the spacecraft by using an array of Single Gimbal 
CMGs it is necessary to develop a steering logic. An optimal steering logic is one that maneuvers the CMG 
gimbal rates to generate spacecraft torques that are equal to the commanded control torques. However, one 
of the principal difficulties in using SGCMGs for spacecraft attitude control is the geometric singularity 
problem in which no control torque is generated for the commanded gimbal rates. The development of a 
SGCMG steering logic must also consider the avoidance of the singularities. The equations are similar to the 
reaction wheels, the combined spacecraft plus CMG rate of change of momentum is not affected by the 
CMG torque but it is affected only by the external torques. 

extsyssys THH =×+ ω
                  (2.8) 

Where:  
Hsys  is the combined CMG plus spacecraft system momentum,  
Text  is the external torque vector and  
ω  is the spacecraft angular rate.  
 
By introducing the internal CMG torque we separate the spacecraft and CMG rate of change of momentum 
equations and solve for the spacecraft rate ω as a function of internal plus external torques. 
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Where: the total system momentum consists of spacecraft plus CMG momentum.  

cmgvsys HJH += ω               (2.10) 

 
The internal CMG torque Tcmg applied to the spacecraft is equal and opposite to the torque applied to the 
CMG array. It consists of two terms: the control torque Tcon intended to control the spacecraft which is also 
the rate of change in the CMG momentum plus a component that cancels the gyroscopic torque cmgH×ω .  

cmgconcmg HTT ×−= ω         (2.11) 
 
The control torque Tcon is a non-linear function of the gimbal angles and gimbal rates. It is the rate of change 
in GMG Momentum. 
 

( )[ ] cmgcon HAT  −=−= δδ        (2.12) 
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The angular momentum vector of the entire CMG array in body axes Hcmg is obtained by combining the 
individual CMG momentum vectors.  Each CMG momentum vector was defined in CMG axes: Gimbal, 
Output, and Spin axes from equation 2.1, and each must be transformed to spacecraft axes using the 
following transformation matrix. 
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Where: matrix Pi transforms the ith CMG momentum from (Gimbal, Output, Spin) axes to spacecraft axes.  
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A simplified model can be obtained when we ignore the momentum about the CMG gimbal and output axes, 
because they are small, and consider only the CMG momentum about their spin axes. The combined CMG 
angular momentum vector is calculated from equation 2.14, as a function of the individual CMG 
momentums h0i and the gimbal angles which define the spin axis orientations. 

( )H r q hcmg i i i i
i

N

i

cmg

= +
=
∑ cos sinδ δ

1
0            (2.14) 

 
Also, by combining equations 2.9 and 2.12 we can rewrite equation 2.9 in terms of only the control torque 
instead of the total CMG torque Tcmg as shown in 2.15. Tcon is the steering torque designed to shape the 
spacecraft rate as commanded by the Attitude Control System. Equations 2.14 and 2.15 can be used instead 
of 2.9 in simple 6-dof simulations that do not require gimbal torque dynamics and coupling with structural 
flexibility. 
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Otherwise, we calculate the control torque from each CMG in the Gimbal, Output and Spin axes and 
transform it from CMG axes to spacecraft axes. Then they are combined to form the total CMG torque 
in body axes. 

iS

O

GN

i
icmg

M
M
M

PT
cmg
















= ∑

=1            (2.16) 

Where: 
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For a more accurate calculation of the CMG momentum Hcmg that includes also the effects due to the gimbal 
torques we may integrate equation 2.9 using Tcmg from equation 2.16. The matrix A used in equation 2.12 
relates the gimbal rates to rate of change in CMG momentum which is the control torque. It is a time varying 
3xNcmg matrix consisting of Ncmg column vectors ai, Its elements ai are related to the Ref and Quad vectors ri 
and qi of each CMG and they vary with the positions of the gimbal angles δi. 
 

( ) ( )
( ) iiiiii hrqa
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             (2.19) 

 
δi is the gimbal angle for CMG (i) 
ri  is a unit vector of the initial momentum direction for CMG (i) 
mi  is a unit vector of the gimbal direction for CMG (i) 
qi  is the orthogonal direction (mi x ri) for CMG (i) 
Tcon  is the control torque applied to the gimbal by the motor 
Tgi  is the gyroscopic torque cmgH×− ω resolved in gimbal (i) direction 

b
gM  is the (3 x 4) transformation matrix from gimbal axis to body axis 

h0i is the constant momentum of the ith CMG about its spin axis. 
NCMG is the number of CMGs used. 
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The CMG gimbal rates are controlled by servo systems that generate gimbal torques Tgi. The servo torque at 
the gimbal of each CMG is also counteracting the gyroscopic disturbance torque created by the spacecraft 
rates φθ  and  resolved about the CMG reference and quad axes, as defined in equation 2.3. Ignoring 
friction, the inertial acceleration of each CMG gimbal is obtained from the gimbal moment equation 2.20, 
where Tgi is the motor torque applied at each gimbal. Even though the CMG moment of inertia about the 
gimbal Jg is relatively small, the 0h×ω  gyroscopic moment produced by the CMG momentum coupling with 
spacecraft rate is a big torque that requires a powerful gimbal servo-motor in order to be able to achieve the 
required gimbal rate.  
 

( )J h Tg In i i i gi
  sin  cosδ θ δ φ δ+ − =0          (2.20) 

 
In the simple models we can assume that the gimbal rates are equal to the commanded rates )(icomdi δδ  = . The 

relative gimbal angle δ for each CMG is obtained by integrating:   δ δ ξ= −In  
 
Single Gimbal CMG Steering 
 
The control system calculates the spacecraft acceleration commands comdω and it is the steering control law 
that generates the gimbal rate commands that drive the servo system which controls the gimbal rates. The 
spacecraft attitude error is used by the control law to calculate the spacecraft acceleration command. The 
attitude error is obtained from the quaternion. The quaternion is updated by integrating the quaternion rate 
which is a function of the body rate and the previous quaternion, as shown in equation 2.21. 
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Equation 2.22 is the steering law which is updated at each iteration. It requires the pseudo-inverse of matrix 
[A] which is a function of the gimbal angles δ and used for calculating the SGCMG gimbal rate commands. 
The steering law makes the spacecraft acceleration to be equal to the commanded acceleration. 
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  (2.22) 

The development of a CMG steering logic, however, should also consider the avoidance of the singularities. 
In the examples section we demonstrate the design of a space station attitude control system using CMGs. 
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2.3 Linearized Equations of Spacecraft with SGCMGs 
In Section 2.2 we developed a non-linear model of a spacecraft controlled with an array of SG-CMGs. The 
following linearized model of a spacecraft with single-gimbal CMGs is applicable for small gimbal 
variations relative to the nominal gimbal angle positions (δ01, δ02, δ03, … δ0n), and is used mainly for control 
analysis. We assume that the spacecraft is in circular orbit of orbital rate 0ω and its angular acceleration is 
obtained from equation 1.14 as a function of variations in the CMG, gravity-gradient, and external torques. 
 
Equation 2.23 calculates the rate of change in CMG momentum, where: (ωX0, ωY0, and ωZ0) are the nominal 
(steady) body rates, and (ωx, ωy, and ωz) are the variations in vehicle rates. Similarly, (ΗX0, ΗY0, and ΗZ0) is 
the nominal (steady) CMG array momentum, and (hx, hy, hz) is the variation in CMG momentum. Tcmg is the 
reaction torque applied to the the CMG array. 
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    (2.23) 

The CMG torque is mainly due to the precession of momentum h0 coupling with the gimbal rate iδ . It also 
has components due to the spacecraft rates from equations 2.3 and the gimbal angle δ0.  It is converted to 
spacecraft axes by the transformation in equation 2.4. Equation 2.24 combines the contributions from all 
CMGs to calculate the total torque. 
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The inertial gimbal acceleration in equation 2.25 is a function of the gimbal torque applied by the servo plus 
gyroscopic terms due to the CMG momentum h0 coupling with the spacecraft rates. It is obtained by 
linearizing equation 2.20. 

( )φδθδδδφδδθδ 
0000000 cossinsincos −++−= igiIng hTJ   (2.25) 

 
The gimbal angle δ for each CMG relative to the spacecraft is obtained by subtracting the spacecraft rate 
from the inertial gimbal rate and integrating equation 2.26 which calculates the spacecraft rates resolved 
about the CMG coordinate axes. The gimbal servo system must be capable of providing the necessary torque 
Tgi in order to control the gimbal rate as commanded by the steering logic. The steering logic converts the 
torque commands from the attitude control system to gimbal rate commands. By accurately controlling the 
gimbal rates, the CMG array achieves the required control torques 
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Where:  
 

Inδ   is the inertial acceleration of a gimbal 
δ0  is the nominal gimbal angle of a CMG (assumed constant in linear model) 
δ  is the small variation of a CMG gimbal angle from δ0 

ξ   is the variation in spacecraft rate about the gimbal axis m 
φθ ,   are the variations in spacecraft rates about the r and q axes 

00 ,φθ     are the nominal spacecraft rates about the r and q axes 
ωX0, ωY0, ωZ0  are the nominal spacecraft body rates about x, y, z  
ωx, ωy, ωz  are the variation in vehicle rate about the body axis.  
ΗX0, ΗY0, ΗZ0 are the nominal CMG array momentum about x, y, z  
hx, hy, hz are the variations in CMG momentum about x, y, z.  
h0  is the CMG constant momentum about its spin axis 
 
The servo system for each gimbal must provide the necessary torque Tg that will regulate the gimbal rateδ  
according to the gimbal rate command comdδ  received from the steering logic. The steering logic converts the 
torque commands from the attitude control system to gimbal rate commands. By accurately controlling the 
gimbal rates the SGCMG array achieves the demanded control torques. 
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Let us consider a spacecraft that is controlled with a centralized Momentum Control System using a cluster 
of momentum exchange devices, such as double-gimbal CMGs. A simplified model is to bypass the steering 
logic that converts torque commands to gimbal rates and to assume that the control torque is equal to the 
commanded torque. Unlike our previous CMG and RW models, this time we will ignore the mounting 
geometry details of the individual CMG devices and analyze them as a combined 3-axis momentum 
exchange system. This is a simplified approach that can be applied to any 3-axis momentum exchange 
system, such as, in a double gimbal CMG array, where there is no direct transfer of gyroscopic torques 
between the rotor and the spacecraft through the bearings. In a double gimbal CMG array there is no direct 
transfer of gyroscopic torques between the rotor and the spacecraft through the bearings. The torque between 
the rotor and the spacecraft is transmitted through the servo actuators which are assumed to be ideal (control 
torque is equal to the commanded torque).  
 
The simulation models bypass the steering logic that converts torque commands to gimbal rates. Equations 
3.1 calculate the rate of change of angular momentum for the spacecraft and also for the CMG cluster. It 
does not include the CMG steering equations. The first equation calculates the rate of change of spacecraft 
momentum as a function of the applied CMG and external torques. 
 

( )
( )

J J T T

H H T
sc sc ext c

cmg cmg c





ω ω ω

ω

= − × + +

= − × −         (3.1) 

 
The second equation calculates the combined CMG momentum in body axes Hcmg. It states that the rate of 
change of momentum in the CMG cluster is equal to the reaction control torque generated by the CMG 
cluster that is applied by the gimbals -TC. It consists of the combined torque of the individual gimbals 
resolved in body axes regardless of how many CMGs are in the cluster. If you add up these two 3.1 
equations together the gimbal torque TC disappears, and you end up with the conservation of system 
momentum equation. 
 
For an orbiting satellite with orbital rate ω0, the Euler angles relative to the rotating LVLH frame are 
obtained from equation 3.2. 
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For more details in using this momentum exchange spacecraft model the user is referred to study our Space 
Station example.  
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3.1 Linearized Equations of a Spacecraft with DG CMGs in LVLH Orbit 
 
In this simple linearized model we assume that the CMGs are a collocated cluster and not individual units. 
The internal CMG steering dynamics and steering logic are not included in the equations. The CMG cluster 
generates control torques in the body axes and the CMG momentum is calculated in the spacecraft axes. The 
spacecraft x-axis is along the velocity vector, the z-axis is pointing towards the earth, and its attitude is 
measured relative to the Local-Vertical-Local-Horizontal frame. For small attitude deviations from the 
average LVLH attitude the rate of change of spacecraft angular momentum is given in equation 3.3. 
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Where: the second term on the right side is the gravity gradient torque. The products of inertia cause 
additional bias torques. The attitude kinematics become 
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The change in CMG momentum in body axes is calculated by integrating the following equation 

( ) ( ) Ccmgcmg THhh −×−×Ω−= 00 ω        (3.5) 
 
Where: Ω0 is the spacecraft average, steady-state rate. The second term is due to coupling of the spacecraft 
rate with the nominal CMG momentum H0. If we assume that the steady-state spacecraft rate is in pitch and 
equal to (-ω0), which is the negative orbital rate, the variation in CMG momentum equations become.  
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Where: TCX, TCY, TCZ are the roll, pitch, and yaw control torques. 
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The following equations describe the motion of a spacecraft that has Ngimb gimbaling appendages attached to 
the main spacecraft body that may be rigid or flexible. The motion of the attached bodies is dynamically 
coupling with the spacecraft bus by the reaction torques generated when the gimbals are pivoting. There are 
two approaches to model this type of spacecraft configuration.  
 
Using H-parameters 
 
The first and easier approach is to use the H-parameters matrix which couples the gimbal motion with 
flexibility. In this case the vehicle mass-properties include the appendage bodies and the structural modes 
are calculated with the gimbals locked. They are released in the equations of motion by the introduction of 
the inertial coupling coefficients matrix Hp. Equation 4.1 calculates the gimbal acceleration relative to the 
spacecraft as a function of the gimbal torque Tgi and the interaction with the flex modes. Hp is the H-
parameters matrix that is calculated from the mass-matrix of the finite elements model.  
I H Tp

T
giα α η + =         (4.1) 

 
Equation 4.2 describes how the flex mode generalized displacements (η) are excited by the external forces 
and torques and also by the gimbal accelerations via the H-parameters. 
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Using Reaction Forces and Torques 
 
The second approach of describing the motion of a spacecraft with gimbaling appendages is to assume that 
the appendages are rigid and they are attached with hinges to the main spacecraft body that may be flexible. 
The pivoting of the rigid appendages excites both rigid and flex spacecraft motion. In this case the structural 
modes of the spacecraft core body are generated without the appendages, and its mass properties should not 
include the appendage weights and inertias because their effects are introduced by the reaction forces and 
torques. The motion of the attached bodies is coupling with the spacecraft bus by the action/ reaction forces 
and torques generated when they are pivoting. 
 
Equation 4.3 calculates the inertial rotational acceleration of an appendage about its hinge generated by the 
hinge torque Tgi. Where: Iα is the moment of inertia of the appendage body about its pivot. 
I T giα α =          (4.3) 

 
The rotational rate of a gimbaling body relative to the spacecraft rα is obtained from equation 4.4, by 
subtracting the spacecraft rate resolved about the hinge vector (hi), from the inertial gimbal rate iα   

( )ibir h•−= ωαα          (4.4) 
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Equation 4.5 calculates the reaction force on the spacecraft at the ith gimbal generated due to the inertial 
rotational acceleration iα of the appendage body about the gimbal and also the spacecraft acceleration 
resolved in the hinge direction. Where: li is the distance vector from the ith pivot to the appendage CG, and di 
is the distance vector between the spacecraft CG and pivot (i). Fsc is the combined force from all gimbals 
motion that drives the rigid body dynamics.  
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      (4.5) 

 
Equation 4.6 calculates the combined torque on the spacecraft due to the individual gimbal torques Tgi of 
Ngimb slewing appendages, where hi is the direction of the ith hinge vector. It is used to drive the rigid body 
dynamics 
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Equation 4.7 is the torque on the spacecraft generated by the gimbal reaction forces combined. 
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Equation 4.8 is the structural flexibility equation. The generalized flex mode displacements (η) are excited 
by external forces and torques (F and T) which include external forces and torques in addition to the forces 
and torques generated at the gimbals. 
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Where: 
 
li  is the moment arm between the pivot (i) and the appendage center of mass 
di  is the moment arm between the spacecraft cg and the appendage pivot (i) 
η   is the Generalized Displacement vector for N modes 
Mg  is a diagonal matrix consisting of the generalized masses of N-modes 
Ω  is a diagonal matrix of N-mode frequencies in (rad/sec) 
F, T  are external forces and torques that excite the bending equations 
Hp  is the H-parameters (Nmod x Ngimb) matrix for the gimbaling bodies 
Φ  is the mode shapes matrix at the excitation points 
hi   is the direction unit vector for hinge (i) 
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In this section we will demonstrate how to generate linear spacecraft systems using the Flixan Flight Vehicle 
Modeling program. We begin with a Space Station model that is controlled by a centralized momentum 
control system. Then we will analyze a spacecraft that is controlled with an array of 4 Single Gimbal CMGs. 
Our third example is a spacecraft that is controlled by an array of 3 Reaction Wheels and it includes 4 
gimbaling appendages. 
 
5.1 Flexible Space Station Model with a Centralized Momentum Control System 
 
The following “Flight Vehicle” dataset was created for a Space Station model that is controlled by a 3-axis 
momentum control system such as a cluster of double-gimbal CMGs. In this case we will not model the 
detailed CMG steering but use the simple generic model described in Section 3. The Space Station Example 
is in folder: “C:\Flixan\Examples\Large Space Station” and the input file that contains the spacecraft data is 
in file “SpaceStation.Inp”. This file contains two spacecraft datasets: a rigid and a flexible model, to be 
processed by the flight vehicle modeling program.  
 
The title of the flexible vehicle set is “Space Station with RCS and a Double-Gimbal CMG Array” and it 
includes the following components: 8 force inputs representing the reaction control thrusters, 3 external 
torques for roll, pitch, and yaw, a centralized momentum control system, 3 gyros, 3 rate-gyros, and 4 
accelerometers. The input file also includes a dataset of 34 selected flex modes to be combined with the 
spacecraft model and other datasets that convert systems to Matlab format. The title of the modal dataset is 
also included at the bottom of the spacecraft dataset. The Space Station dataset is shown below. 
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The flight vehicle modeling program will process the above spacecraft dataset, including the following 
dataset which contains the selected space-station flex modes, and is referenced by its title. It is located in the 
same input file and includes frequencies (rad/sec), damping coefficients (ζ), modal mass in (slugs), and 
mode shapes and slopes at specific locations. Only the first of the 34 modes is shown. The locations 
correspond to the locations specified in the spacecraft dataset above. 
 
To process this dataset using the flight vehicle modeling program start the Flixan program, select the project 
directory, then go to “Program Functions”, “Flight Vehicle/ Spacecraft Modeling Tools”, and then “Flight 
Vehicle State-Space”. From the following menu select the input and system filenames and click on “Process 
Files”. 
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The following menu shows the “Flight Vehicle” datasets which are in file “SpaceStation.Inp”. Select the 
second dataset that includes flexibility and click on “Run Input Set” to process it. 
 

 
 
The flight vehicle modeling program reads the data and presents the following dialog that shows the 
spacecraft parameters in tabs, prior to processing it. Click on “Run” to process the dataset and the program 
will create the spacecraft state-space system in file “SpaceStation.Qdr”. 
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The table below is included in the output and it lists the Space Station system 15 inputs and 24 outputs. The 
system has 8 RCS jet force inputs providing forces in the directions defined in the input data. Actually, the 
inputs are defined as throttles rather than forces, which are the ratios of “force divided by max force”. There 
are 3 control torques in roll, pitch and yaw, provided by the centralized CMG cluster. We have also included 
3 external torques for disturbance analysis. The last input is an additional disturbance torque in the direction 
defined in the input data. 
 
The system outputs are the standard flight vehicle model outputs. Some of them are not useful for this 
application and they can be removed from the model. The set includes 3 gyros, 3 rate gyros, and 4 
accelerometers at the locations defined in the input data. The last 3 outputs are the CMG momentum in 
spacecraft roll, pitch, and yaw axes. Actually they are variations in the CMG momentum from nominal 
momentum because this model is linear. 
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5.2 Agile Spacecraft with Single-Gimbal CMGs 
 
In our next example we will create a flexible spacecraft that is controlled with an array of 4 SGCMGs, and it 
implemented as described by the model in Section 2.3. The detailed analysis of this example is in folder 
“C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(g) 4SGCMG 
Robust_Anal”, and the input file that contains the spacecraft data is in file “FlexSc_4CMG.Inp”. This file 
contains two almost identical spacecraft datasets. They both include flexibility and the second model 
includes uncertainties and it is used for analyzing robustness. The file also includes a dataset of 40 selected 
structural modes to be combined with the flex models. The title of the first vehicle dataset is “Flexible Agile 
Spacecraft with 4 SG-CMG” and it includes: 4 SG-CMGs, 9 gyros and 6 accelerometer sensors. The data of 
each SGCMG include: the constant momentum of 1200 (ft-lb-sec), the direction of the gimbal unit vector m, 
the momentum reference direction unit vector r (at zero gimbal angle), the pyramid γ and β angles, and the 
CMG moments of inertia about the CMG axes. At the bottom of the set, it includes the title of the modal data 
set, and it will use 40 of those modes. The dataset for this configuration is shown below. 
 

 
 



3-31 

 

 
 
The selected modal data set of the flexible spacecraft (first mode is shown above), is also included in the 
input data file. It includes frequencies (rad/sec), damping coefficients (ζ), modal mass in (slugs), and mode 
shapes and slopes at specific locations. The locations correspond to the actuator and sensor locations 
specified in the spacecraft dataset. 
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To process this dataset using the flight vehicle modeling program start the Flixan program, select the project 
directory, then go to “Program Functions”, “Flight Vehicle/ Spacecraft Modeling Tools”, and then “Flight 
Vehicle State-Space”. From the following menu select the input and system filenames and click on “Process 
Files”. 
 

 
 
The following menu shows the “Flight Vehicle” datasets which are in file “FlexSc_4CMG.Inp”. Select the 
first one and click on “Run Input Set” to process it. 
 

 
 
The flight vehicle modeling program reads the datasets and displays the following dialog that shows the 
spacecraft parameters prior to processing. Click on “Run” to process the dataset and the program will create 
the spacecraft state-space system in file “FlexSc_CMG_FVP.Qdr”. 
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The table below shows the spacecraft system 5 inputs and 37 outputs. The system has 4 torque inputs that 
drive the gimbals of the 4 SG-CMGs. The torques are generated by the servo systems that control the gimbal 
rates. The 5th input is an external disturbance force in the x-direction. 
 
The outputs are the standard flight vehicle model outputs. Some of them are not useful and they can be 
removed from the model. The set includes 3 gyros, 6 rate gyros, and 6 accelerometers at the locations 
defined in the input data. The next 8 outputs are the CMG gimbal rates and positions. The last 3 outputs is 
the combined CMG momentum in spacecraft roll, pitch and yaw axes. Actually they are variations in the 
CMG momentum from nominal momentum in body axes because this model is linear. 
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5.3 Flexible Spacecraft with Reaction Wheels and Gimbaling Appendages 
 
In this example we will create a flexible spacecraft model that is controlled with an array of 3 Reaction 
Wheels and includes four gimbaling appendages which are controlled by servo motors. It is based on the 
model described in Section 1.1. This example is described in detail in folder “C:\Flixan\ Examples\ 
Surveillance Satellite React-Wheels”. The input file that contains the spacecraft data is in file 
“Surv_Sat_RB+Flx.Inp”, and it contains three different data-set models to be processed by the flight vehicle 
modeling program. It contains also a selected set of 60 flex modes, and Matlab conversion datasets. The 
vehicle dataset to be analyzed includes 7 reaction control thrusters for attitude control and momentum 
desaturation, 3 external torques (roll, pitch, and yaw), 3 reaction wheels. For sensors it uses 13 rotational 
measurements for attitude and rate, and two accelerometers in the X and Y directions. 
 
The reaction wheel data include the direction of the spin unit vectors, the nominal wheel speeds in (rpm), 
and the wheel moment of inertia about the spin vector. In this case, one of the reaction wheels provides a 
momentum bias in pitch because its rotor has a constant speed at -4775 (rpm). It is used as a momentum 
wheel for spin stabilization. The other two wheels have zero momentum bias.  They are tilted in the Y-Z 
plane and they are used for pitch and yaw control. There is no roll control by the RW. 
 
The input file includes a selected set of 60 flex modes. The title of the modal data is included at the bottom 
of the vehicle dataset. In addition to flexibility this spacecraft includes 4 gimbaling appendages for solar 
arrays and optical instruments. The dynamic coupling between flexibility and the appendages pivoting is 
defined by the H-parameters matrix which is in file “Surveillance-Sat.Hpr”. This file also includes the 
masses, the moments of inertia matrix, hinge directions, hinge coordinates, and the CG coordinates of the 4 
appendages. The spacecraft dataset is shown below. 
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The flight vehicle program will process the above dataset and generate the spacecraft state-space system. 
The modal data set below is also in the input file and contains the selected modal data for the flexible 
spacecraft model. It includes frequencies (rad/sec), damping coefficients (ζ), modal mass, and mode shapes 
and slopes. The locations correspond to the locations specified in the spacecraft dataset. The inertial 
coupling coefficients file includes the H-parameters matrix. Each row corresponds to a mode and only the 
rows that correspond to the selected modes are included in the calculations. 



3-37 

 

 
Inertial Coupling Coefficients File “Surveillance-Sat.Hpr”  
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To process this dataset using the flight vehicle modeling program start the Flixan program, select the project 
directory, then go to “Program Functions”, “Flight Vehicle/ Spacecraft Modeling Tools”, and then “Flight 
Vehicle State-Space”. Then from the following menu select the input and system filenames and click on 
“Process Files”. 

 

 
 
The menu below shows the three “Flight Vehicle” datasets which are in file “Surv_Sat_RB+Flx.Inp”. Select 
one of them and click on “Run Input Set” to process it. The following dialog is presented by the Flight 
Vehicle Modeling program and it displays the vehicle data in tabs. Click on “Run” to process the dataset. 
The spacecraft system will be saved by the program in file “Surv_Sat_RB+Flx.Qdr”. 
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The table below shows the spacecraft system 18 inputs and 37 outputs. The system has 7 RCS jet force 
inputs that provide thrusts in the directions defined in the input data. Actually, the inputs are defined as 
throttles, rather than forces in the FVMP, which are the ratios of “force divided by max force”. There are 3 
RW control torques in the directions defined in the input data. The system also has 4 torques applied at the 4 
appendage gimbals. We have also included 3 external torques for disturbance analysis. The last input is an 
additional disturbance torque in the pitch direction. All torques are in (ft-lb). 
 
The outputs are the standard flight vehicle model outputs. Some of them are not useful for spacecraft 
applications and they can be removed from the model. The set includes 10 gyros, 3 rate gyros, and 2 
accelerometers at the locations defined in the input data. The next 3 outputs are RW rates in (rpm). Actually 
they are variations in the RW rate from nominal because this model is linear. The last 8 outputs are position 
angles and rates at the gimbals of the 4 pivoting appendages. 
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