
1

In this example we have a spacecraft that requires high precision pointing for optical
instruments, such as a telescope, or laser beam. The spacecraft Line-of-Sight (LOS) is along the
body x-axis and it is pointing at targets. It is pointed at a target for a period of time and then it
rotates to point at different target, and then another. The spacecraft is described as agile because
under normal operations it is constantly maneuvering between targets and the retargeting must
be completed as fast as possible. The on-board Attitude Control System (ACS) is operating in
different control modes depending on the circumstances. It uses a combination of RCS jets and
Single-Gimbal Control Moment Gyros (SG-CMG). In normal mode of operation, the ACS uses

2

four Control Moment Gyros which provide high torque required for fast maneuvering between
targets. The CMGs use solar energy and they do not require fuel, they also provider smoother
operation than RCS. The spacecraft uses the RCS jets for momentum desaturation and also as
an ACS backup. It also has a fixed thruster engine for orbital maneuvering. The spacecraft
structure is flexible because of the solar arrays and other communication appendages that
require finite element modeling and detailed flex analysis. To further complicate the analysis,
there is also a propellant tank containing fuel for the main engine and the RCS jets. The
propellant sloshing inside the tank during orbital maneuvering affects the vehicle stability and
introduces oscillatory disturbances that require analysis because they may degrade the LOS
pointing accuracy.

The following analysis focuses mainly in the two main modes of operation, the RCS and the
CMG attitude control. We will develop several dynamic models for this flexible spacecraft,
design control laws and analyze the ACS stability and performance in various modes of
operation. The analysis begins with simple rigid-body models and it gradually becomes more
complex as we include structural flexibility and fuel sloshing dynamics. We also gradually
increase the complexity of the control laws, starting with a simple phase-plane 3-dof logic and
upgrading it to a 6-dof logic that provides simultaneous translation and attitude control. The
modified logic is also designed to reduce fuel consumption by pulse-width-modulating the RCS
jets. Other control ideas, such as, using blended CMGs and Reaction Wheels (RW), and
combined RCS with RW configurations are also evaluated.

In section 1 we use the Flixan program to prepare various flexible spacecraft dynamic models
that will be used in later chapters. Two sets of models are created using the “Flexible Spacecraft
FEM” program (FEM), and the “Flight Vehicle Modeling” program (FVP), and they are saved
in two separate folders. The modeling section can be skipped if the user is already familiar with
vehicle modeling in Flixan and may jump to the more interesting analysis sections. In section 2
we design and analyze the RCS system. We begin with a simple 3-dof phase-plane, combined
with a dot-product jet-selection logic, and gradually upgrade it into a more advanced logic that
minimizes fuel usage. The method is augmented to 6-dof by including also translational control.
In section 2.6 we develop a non-linear slosh model for a partially filled fuel tank. This model is
used for zero g or low g environment. It is combined with the spacecraft model and used to
perform stability analysis. In section 3 we develop the Max Energy, non-linear control law for a
4 SG-CMG array with a singularity avoidance algorithm and implement it in various simulation
models. Finally, in chapter 4 we present simulation models that demonstrate multi-mode
operations.

3

Structural flexibility is an important factor to consider when analyzing stability and performance of
this spacecraft. It has solar arrays, antennas, and other appendages mounted on its relatively solid
bus structure that create low damped flex resonances which induce disturbances on the spacecraft
when they get excited by the spacecraft motion as it maneuvers around. This causes degradation in
LOS pointing, and jitter in optical imaging. Flexibility may also cause structural instability if not
filtered properly. In this section we are describing how to use the Flixan program to generate linear
models of the spacecraft that include structural flexibility and fuel sloshing. If you are already
familiar with the Flixan modeling process you may bypass this section and go to the more
interesting stuff in Section 2.

The first 46 structural modes of this spacecraft are saved in file “FlexSc_Rcs.Mod”. They were
obtained from a finite element modeling (FEM) program. The title of the modal data is “Flexible
Spacecraft with Solar Array, RCS and CMGs”. There is a block of data for each mode (resonance)
and there are 46 blocks of data. Each block contains the mode shapes and slopes of a particular
resonance at 19 vehicle locations (nodes). The first six modes are rigid-body modes at zero
frequency and they define the rigid-body motion of the spacecraft. We typically throw away the
first 6 rigid-body modes because we have our own rigid-body models which are more efficient. The
real structural modes start with mode number 7 which is at 0.5 Hz. Another important file for flex
model preparation is the nodes map, file “FlexSc_Rcs.Nod”, which describes the identity of the 19
structural locations (nodes) included in the modal data file, in the same order as they are listed there.
The map file is used in menus by the model preparation programs.

4

Figure 1 Location of the RCS Jets and the Main Engine

5

In this section we will describe the preparation of some of the flex spacecraft state-space systems
that will be used in the subsequent analysis sections. The systems are created from an already
existing finite elements model using the “Flex Spacecraft FE Modeling Program” from the Flixan
package. The files for this model preparation are in folder “…\Examples\Flex Agile Spacecraft with
SGCMG & RCS\Reaction Control System Analysis\(a) Flex Models from Spacecraft FEM”. This
folder in addition to the modal data and node files it contains also the spacecraft input data file
“FlexSc_FEM.Inp”, which contains the data for creating three spacecraft models using the Flex
Spacecraft FE Modeling Program. The three spacecraft systems are:

1. A rigid-body model created from the first 6 modes of the FEM, which are rigid-body modes.
Its title is “Rigid-Body Spacecraft with RCS and CMG”.

2. A flexible spacecraft model that uses all 46 FEM modes, 6 rigid-body and 40 flex. Its title is
“RB+Flex Spacecraft with RCS and CMG”, and

3. A structural model only, which uses only the 40 flex modes, excluding the first 6 rigid
modes. Its title is “Flex Only Spacecraft with RCS and CMG”.

On the top of the input data file there is a batch data-set “Batch for the Flex Satellite with RCS and
CMGs” which is a short script of commands that automates the generation of the spacecraft
systems. The above batch creates the three spacecraft state-space systems, discretizes them using 5
msec sample rate, and converts them in Matlab format for the analysis that follows. Although the
data for creating the spacecraft models is already in file “FlexSc_FEM.Inp” and all you have to do
is run the batch file to create the models, in the following two sections we will demonstrate how to
create the input data-sets using both approaches: from the batch and also from scratch.

Creating the Systems in Batch Mode

To run the batch set, first start the Flixan program, go to folder “… \Flex Agile Spacecraft with
SGCMG & RCS\Reaction Control System Analysis\ (a) Flex Models from Spacecraft FEM”. Go to
“Edit”, “Manage Input Files”, and then “Process/ Edit Input Data”.

From the following dialog select the input file “FlexSc_FEM.Inp” and press the “Select Input File”
button. The menu on the right shows all the data-sets that are saved inside the input file. Select the
top batch set: “Batch for the Flex Satellite with RCS and CMGs”, and click on “Execute/ View Input
Data”.

6

The Flixan program executes all the data-sets which are called by the batch and saves the spacecraft
systems in file “FlexSc_FEM.Qdr”. It also creates Matlab function m-files of the same systems that
can be loaded into Matlab. Click “Exit” to end the Flixan program.

The Matlab function (a,b,c,d) files created are:

1. (rb_spacecraft_fem_s.m) which contains the system “Rigid-Body Spacecraft with RCS and
CMG”.

2. (rb_spacecraft_fem_z.m) which contains the system “Rigid-Body Spacecraft with RCS and
CMG (Z-Transf)”.

3. (flex_spacecraft_fem_s.m) which contains the system “RB+Flex Spacecraft with RCS and
CMG”.

4. (flex_spacecraft_fem_z.m) which contains the system “RB+Flex Spacecraft with RCS and
CMG (Z-Transf)”.

7

5. (flex_only_fem_s.m) which contains the system “Flex Only Spacecraft with RCS and
CMG”.

6. (flex_only_fem_z.m) which contains the system “Flex Only Spacecraft with RCS and CMG
(Z-Transf)”.

Creating one of the Systems from Scratch

To create one of the systems from scratch, we must first start the Flixan program, then go to folder
“… \Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\ (a) Flex Models
from Spacecraft FEM”, go to “Analysis Tools”, “Flight Vehicle/ Spacecraft Modeling Tools”, and
then to “Flex Spacecraft (Modal Data)”.

Then we must select the input data file where we are going to save the spacecraft data and output
system file that contains the state-space systems. Select or create the files “FlexSc_FEM.Inp” and
“FlexSc_FEM.Qdr”, and click on “Create a New Input Set”, assuming that we want to create a new
set of spacecraft data.

8

The following dialog is used to define the number of spacecraft excitation and measurement
locations. We first define the spacecraft system title “RB+Flex Spacecraft …”, 16 force excitation
points for RCS jet forces etc, 3 torque excitation points for the CMG (roll, pitch and yaw) torques, 9
translation measurement points for accelerometers, and 12 rotational measurements for ACS gyros
and other LOS sensitivity measurement points. We also select the modal data and the nodes
filenames “FlexSc_FEM.Mod” and “FlexSc_FEM.Nod”, which are already inside the folder. We
finally write some notes in the field at the bottom. Notes for our own convenience and book-
keeping that will be included as comments below the title in the data sets and in the systems file.

The next step is to define the excitation and measurement points in terms of nodes that correspond
to the FEM data and also to define force or measurement directions. The nodes map file appears in a
menu form to assist the user in selecting locations for the number of points defined, starting with the
force excitations. Force #1 corresponds to RCS jet #1 (Back/ Right –Y +Z) which is at node #8 and
its thrust direction unit vector is (x=0.01, y=-0.92, z=0.39). Continue defining the 16 force
excitations. Force excitation #5 corresponds to RCS jet #5 (Front/ Right –Y +Z) which is at node
#12 and its thrust direction unit vector is (x=0.08, y=-0.72, z=0.69). Similarly we define force #12
to be jet #12 (Back/ L Axial +X) at node #19 with a thrust direction unit vector is (x=1, y=0, z=0).
Force #13 is the reboost engine force at node #5 firing in the (1, 0, 0) direction, and so on. Force
excitations #14, #15 and #16 are at the tank center node #7, along x, y, and z respectively. Press
“OK” every time to continue with the next excitation point.

9

10

11

We must also define locations for the 3 torque excitation points define. They correspond to the 3
CMG torques, about the x, y, and z directions. They are all at node #6. For example torque
excitation #3, shown below, corresponds to the yaw CMG torque which is at node #6 in the (x=0,
y=0, z=1) direction. Press “OK” to define the next point.

12

The next step is to define the 9 translational measurement points defined. For example, translational
sensor #1 is defined to be an accelerometer at node #2 measuring in the x direction. Translational
sensor #2, shown below, is defined to be an accelerometer at node #2 measuring in the y direction.
Translational sensor #3 is defined to be an accelerometer at node #2 measuring in the z direction.

13

Similarly, the translation sensors #4, #5, and #6 are at node #4, the solar array hinge, measuring
accelerations along the x, y, and z axes.

Similarly, the translation sensors #7, #8, and #9 are at node #7, the fuel tank center, measuring
accelerations along the x, y, and z axes. These locations are needed for coupling the spacecraft with
the slosh model.

14

Finally, we must define the 12 rotational sensor points. Rotational sensor #1, see below, is at the
navigation base at node #2 and it is measuring roll attitude. Similarly, rotational sensors #2 and #3
are also at the navigation base node #2, and they are measuring pitch and yaw attitude.

15

Rotational sensors #4, #5 and #6 are also at the navigation base at node #2 and they are measuring
roll, pitch, and yaw rates at that location.

16

Rotational sensors #7, #8 and #9 are at the pointing antenna at node #1 and they are measuring roll,
pitch, and yaw rates at that location. Similarly, rotational sensors #10, #11 and #12 are at the solar
array hinge at node #4 and they are measuring roll, pitch, and yaw rates at that location.

17

Now that we have defined the excitation and measurement points on the spacecraft the next step is
to select some of the flex modes. The program is now ready to perform a mode selection operation,
and to choose or allow the user to choose some of the most dominant flex modes. This operation,
however, is not important for us right now because we want to include all 46 modes in our model,
but we still have to go through a dummy selection process. This operation will also rescale the
modal data which are in units of inches originally. From the following menu we choose to compare
the modal strength of all modes (from 1 to 46), and we must also choose a few excitation points and
a few sensors for the dummy mode selection. Choose the graphic option, and click “OK”.

In the following question dialog answer “Yes” to modify the data, and in the next dialog keep the
defaults which will rescale the system from units of (inches) to units of (feet). It will also reverse
the x and z directions because we would like to have the x direction towards the LOS and the z
down, in contrast to structures who prefer the opposite.

18

We finally select some dummy force and torque excitation points and some dummy translational
and rotational measurement points required by the program in the mode selection process as it
calculates the modal strengths. As we said earlier, we don’t care in this case which points to pick
because we have already decided to include all the modes. For a force excitation, for example, we
can pick the first RCS jet at node #8 firing in any direction. For rotational measurement we may
pick the ACS gyros at node #2 measuring in any direction. But we must be careful in selecting the
excitation and measurement points because there are also zeros in the modal data, because some
nodes have only rotations or only translations defined. In this case there will be a zero transfer
between the excitation and measurement points and the program will terminate without mode
selection results.

19

The program finally calculates the modal strengths for the 46 modes and displays it in bar-chart.
Each bar corresponds to a mode number. The user must select all the modes from the chart, shown
below, by clicking on the bar with the mouse. When a mode is selected its color changes from red to
green.

20

21

Simple Simulation Using the Finite Element Model

The following simulation model ‟Flex_Sim.mdlˮ uses the system title ‟RB+Flex Spacecraft with
RCS and CMGˮ, which was created using modal data as described earlier. It is saved in folder
‟C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System
Analysis\(a) Flex Models from Spacecraft FEM\Matanˮ.

Simple RCS Sim
Using the FEM

-K-

d2r
rater

atter
f (i)

Phase-Plane
Controller

Fjet

rate

atti

Flex Vehicle

[10, -10, 10]

Atti_cmd
(deg)

rate error

attitude

The simulation consists of the spacecraft dynamics and a simple phase-plane controller "Phase-
Plane.m". It is initialized by file "start.m" which loads the spacecraft state-space system from file
"flex_spacecraft_fem_s.m". The rigid-body modes are included in the finite element model. The
following figure shows the spacecraft attitude response to 10 (deg) attitude commands in different
directions. It also shows accelerometer and rate gyro responses in three spacecraft locations. This is
a simple model to begin. We will continue with more complex models in the following sections.

22

Fl
ex

 V
eh

ic
le

 D
yn

am
ic

s
(fr

om
 F

E
M

)

%
 I

np
ut

s
 =

 1
9

%

 1

 F
or

ce
 N

o
 1

 A
pp

lie
d

at
 N

od
e

 8

 (
lb

f)

%

 2

 F

or
ce

 N
o

 2
 A

pp
lie

d
at

 N
od

e

 9
 (

lb
f)

%

 3

 F
or

ce
 N

o
 3

 A
pp

lie
d

at
 N

od
e

10

 (
lb

f)

%

 4

 F

or
ce

 N
o

 4
 A

pp
lie

d
at

 N
od

e

11
 (

lb
f)

%

 5

 F
or

ce
 N

o
 5

 A
pp

lie
d

at
 N

od
e

12

 (
lb

f)

%

 6

 F

or
ce

 N
o

 6
 A

pp
lie

d
at

 N
od

e

13
 (

lb
f)

%

 7

 F
or

ce
 N

o
 7

 A
pp

lie
d

at
 N

od
e

14

 (
lb

f)

%

 8

 F

or
ce

 N
o

 8
 A

pp
lie

d
at

 N
od

e

15
 (

lb
f)

%

 9

 F
or

ce
 N

o
 9

 A
pp

lie
d

at
 N

od
e

16

 (
lb

f)

%

10

 F

or
ce

 N
o

10
 A

pp
lie

d
at

 N
od

e

17
 (

lb
f)

%

11

 F
or

ce
 N

o
11

 A
pp

lie
d

at
 N

od
e

18

 (
lb

f)

%

12

 F

or
ce

 N
o

12
 A

pp
lie

d
at

 N
od

e

19
 (

lb
f)

%

13

 F
or

ce
 N

o
13

 A
pp

lie
d

at
 N

od
e

 5

 (
lb

f)

%

14

 F
or

ce
 N

o
14

 A
pp

lie
d

at
 N

od
e

 7

 (
lb

f)

%

15

 F

or
ce

 N
o

15
 A

pp
lie

d
at

 N
od

e

 7
 (

lb
f)

%

16

 F
or

ce
 N

o
16

 A
pp

lie
d

at
 N

od
e

 7

 (
lb

f)

%

17

 T
or

qu
e

N
o

 1
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%

18

 T
or

qu
e

N
o

 2
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%

19

 T
or

qu
e

N
o

 3
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%
 O

ut
pu

ts
 =

 2
1

%

 1

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 2

 (
ft

)

%

 2

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 2
 (

ft
)

%

 3

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 2

 (
ft

)

%

 4

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 4

 (
ft

)

%

 5

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 4
 (

ft
)

%

 6

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 4

 (
ft

)

%

 7

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 7

 (
ft

)

%

 8

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 7
 (

ft
)

%

 9

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 7

 (
ft

)

%

10

 X
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

11

 Y
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

12

 Z
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

13

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

14

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

15

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

16

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

17

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

18

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

19

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

%

20

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

%

21

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

ac
ce

le
ra

ti
on

s
at

 n
od

es
 #

2,

 4
,
7

ra
te

s
at

no
de

s
#

2,
 1

,
4

12
 R

CS

J
et

 F
or

ce
s

2at
ti

1ra
te

tim
e

tim
e

ra
te

_n
4

ra
te

4

ra
te

_n
2

ra
te

2

ra
te

_n
1

ra
te

1

at
tit

at
tit

ud
e

#2

ac
c_

n7

ac
c

@
 n

od
 #

7
ac

c_
n4

ac
c

@
 n

od
 #

4
ac

c_
n2

ac
c

@
 n

od
 #

2

T
cm

g

x'
 =

 A
x+

B
u

 y
 =

 C
x+

D
u

S
pa

ce
cr

af
t

FE
M

Ft
an

k

Fe
ng

C
lo

ck

1Fj
et

nt

 1 3 3

23

Figure 1.1.1 Flexible spacecraft response to 10 (deg) attitude commands.

24

Frequency Domain Stability Analysis

In the same folder there is also a Simulink model “Open_Loop_RCS.mdlˮ used for analyzing RCS
flex mode stability using the Describing Function (DF) method.

RCS Open-Loop Model for Frequency Domain
Describing Function Stability Analysis

Note, Roll, Pitch, Yaw plus
infinite number of other directions
can be checked for Stability

Each direction corresponds to
a unique set of thrusters

1
mag

(0 0 1)

rotat vector

Udir

atter

rater

mag

atter + rate
Mix

V U

Unit
Vect

-K-

Na_max

Udir

mag
f (i)

Jet Select

Fjet
atti

rate

Flex Vehicle
1

mag

Figure 1.1.2 Frequency domain model for RCS stability analysis using Describing Function

This model is an open-loop linearized version of the previous closed-loop model. It consists of the
same basic subsystems, slightly modified for frequency domain analysis. Stability is evaluated one
axis (rotational direction) at a time. The rotational direction is an input to the model. In the example
above we are analyzing the yaw axis. By modifying the rotation vector we can analyze pitch (0, 1,
0) and roll (1, 0, 0). It is also possible to analyze stability in many other skewed directions such as:
(0, 0.7, -0.7) or (0.5, -0.3, 0.6), since every direction corresponds to a unique set of thrusters
exciting the flex modes differently. For linear analysis the complex non-linear phase-plane logic is
approximated with a linear combination of attitude plus rate errors. The linearized jet selection logic
is also an approximation because it averages the positive and negative accelerations about a specific
rotational vector. It selects not only the positive direction jets (with half thrust) but also the jets that
accelerate in the opposite direction but assuming negative half thrusts, thus, exercising both positive
and negative jets. The system output is multiplied by the max value of the dead-band DF to scale
the Nichols charts so that the Nichols critical point (+) corresponds to the min of the DF inverse,
that is -1/N(a). The Matlab file "frequ.m" uses the above model to calculate the frequency response
and plot the Nichols charts as shown in Figure (1.1.3) below.

25

Figure 1.1.3 Nichols Charts showing stability margins from the minimum point of -1/N(a)

26

Flexible spacecraft models can also be created using the Flight Vehicle Modeling Program (FVP).
The following analysis is similar to Section 1.1 except that it uses the FVP to model the same
spacecraft. The input data and the analysis are saved in a separate
folder “C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System
Analysis\(b) Flex Models from Flight Vehicle Program”. Take a look at the input data file
“FlexSc_FVP.Inp”. This file creates 3 flight vehicle models: a rigid-body model “Rigid-Body Agile
Spacecraft with RCS”, a flexible spacecraft model for zero g RCS analysis “Flexible Agile
Spacecraft, Zero-g RCS Model”, and an accelerating flex model for RCS control during re-boost
when the main engine is firing “Flexible Agile Spacecraft, Reboost Model”. Some of these
spacecraft models are z-transformed using 5 msec sampling period for discrete analysis. Their titles
are slightly modified, extended with the label "(Z-Transf)". The continuous and discrete systems are
then re-formatted for Matlab analysis. The Matlab m-function state-space system files for the zero g
models are: "Flex_Spacecraft_fvp_s" and "Flex_Spacecraft_fvp_z", and for the accelerating models
are: "Reboost_fvp_s" and "Reboost_fvp_z". These systems are loaded into Matlab workspace. The
systems file “FlexSc_FVP.Qdr” contains the state-space systems with comments and input/ output
definitions.

There is a batch set on the top of the input data file “FlexSc_FVP.Inp”. Its title is "Batch for Large
Flexible Spacecraft", and it is used to speed up the data processing by the Flixan program. To
execute this batch, start Flixan, go to "Edit", select "Manage Input Files (*.Inp)", and "Process/ Edit
Input Data".

In the following dialog there is a menu on the left side listing the input data files in the selected
directory. In this case there is only one file “FlexSc_FVP.Inp”. Click on the file name and then click
on "Select Input File". The menu on the right side of the dialog will display the titles of all the data
sets which are saved in the input file. The program which processes the data-set appears on the left
of the title. The creation of the data sets is not shown in this example because it has been
demonstrated in other similar examples. Select the first set which is the batch that runs all the other
sets, and click on “Execute/ View Input Data”. The batch executes each data set sequentially and
saves the data in file “FlexSc_FVP.Qdr”.

27

The input data file contains also a set of selected modal data. Its title is “Large Flexible Satellite
with RCS, All Modes”. The modal data set contains 40 pre-selected and pre-processed modes which
is used by the FVP to model structural flexibility. Only flex modes were selected, no rigid-body
modes since the rigid-body dynamics is provided by the FVP. The mode selection and preparation
step is not shown in this example because it has been demonstrated in other examples. The modal
data file “FlexSc_FEM.Mod” and the nodes map “FlexSc_FEM.Mod” were used during the mode
selection process. The modal data consists of 40 sets of data, a set for each of the selected modes.
The data consist of mode frequency and damping, and the mode shapes, translations and rotations at
key locations, such as, the 12 RCS jets, the 9 gyros (3 locations times 3 directions each), the 6
accelerometers (2 locations x 3 directions each), the center of the fuel tank, and the reboost engine.

28

Simple Simulation that uses the FVP Model

The following simulation model
‟Flex_Sim.mdlˮ uses the system title
‟Flexible Agile Spacecraft, Zero-g
RCS Modelˮ, which was created
using the Flight Vehicle Modeling
Program as described earlier. It is
saved in folder ‟C:\Flixan\
Examples\ Flex Agile Spacecraft with
SGCMG & RCS\Reaction Control
System Analysis\(b) Flex Models
from Flight Vehicle
Program\Matanˮ.

Flex Vehicle Dynamics from Flight Vehicle Modeling Program

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

accelerations
at nodes # 2 & 4

rates at
nodes #
2 & 1

12 RCS
Jet Forces

2
atti

1
rate

time

time

rate_n2

rate 2
rate_n1

rate 1

attit

attitude
n#2

acc_n4

acc @ nod #4
acc_n2

acc @ nod #2

x' = Ax+Bu
 y = Cx+Du

Vehicle

Term

Clock

2
Feng

1
Fjet

 1]

[nt

Flex RCS Sim
(FVP)

-K-

d2r

110

Reboost Engine
Thrust

rater

atter
f (i)

Phase-Plane
Controller

Fjet

Feng

rate

atti

Flex Vehicle

[10, -10, 10]

Atti_cmd
(deg)

29

The file "start.m" initializes the spacecraft parameters, such as, the jet locations, thrusts, and thrust
directions, the phase-plane parameters, the spacecraft CG location, and it also loads the file name
"flex_spacecraft_fvp_s.m" that contains the flexible spacecraft (a, b, c, d) matrices. This file was
created earlier by running the batch. The spacecraft dynamics has 12 jet input forces and one main
engine input thrust. Only the jets are used for controlling the spacecraft attitude. The reboost engine
force is a disturbance which is counteracted by the RCS jets. The file "Phase-Plane.m" contains the
phase-plane and jet-selection logic. The file "pl.m" is used to plot the data after executing the
Simulink model.

Figure (1.2.1) shows the spacecraft rate-gyro, accelerometer, and attitude response to a 10 (deg)
attitude command in all three directions. The engine thrust was set to zero. It shows also the rate-
gyro and accelerometer responses in two separate locations.

30

31

Figure (1.2.2) shows the spacecraft response to the continuous firing of the main engine. The
spacecraft is commanded to maintain a constant zero attitude during reboost. The RCS jets are
firing regularly attempting to counteract the disturbance torque created by the engine thrust vector
and spacecraft CG misalignment and to maintain zero attitude. The attitude is maintained within the
dead-band which is 0.2 (deg). The rate-gyro and accelerometer responses in two separate locations
are also shown.

Figure 1.2.2 Spacecraft Attitude response to a continuous firing of the 100 (lb) reboost engine

32

33

In this section we will design the RCS control laws, starting with a simple phase-plane logic and
advancing to a more complex jet selection that minimizes fuel usage. We will also perform analysis
and simulations, starting with a simple rigid-body non-linear simulation, and gradually advance to
more complex models that include structural flexibility and fuel sloshing. We will present a non-
linear model for modeling propellant sloshing at zero or low g, and finally analyze RCS stability in
the frequency domain with flexibility and fuel sloshing.

Frcs

W_b

Qt

Vehicle
Dynamics

Qc

Qf
qe

Quat Error

rater

atter
f (i)

Phase-Plane
Controller

Qcom

Command
30 deg

body rate

Quaternion Feedback

Figure 2.1 Attitude Control System

Let us begin with a simplified version of the RCS Attitude Control System shown in Figure (2.1). It
consists of the spacecraft dynamics inside the green block, a phase-plane attitude control system
(orange block), a quaternion attitude command generator, and a quaternion error block (yellow).

34

The orange block in Figure (2.1) is the Attitude Control System (ACS) which consists of the phase-
plane logic and the jet-selection logic. The yellow block calculates the attitude error. The inputs to
the phase-plane logic are attitude errors, and vehicle rates. The phase-plane calculates the demanded
change in vehicle rate, which is a vector about which the vehicle must rotate in order to move from
the initial orientation to the commanded attitude. The jet selection logic translates the rate command
vector into jet firing. It uses dot product to calculate the torque contributions from all 12 jets in the
commanded direction and it selects a few jets that contribute the biggest moment in that direction.
The output from jet-select is a vector of 12 jet forces. Most of them are “off”. The logic fires
between 2 to 4 jets at a time, depending on the commanded direction. Figure (2.2) shows the phase-
plane logic in one axis. It determines the acceleration direction from the rate and attitude errors.
There are 3 separate phase-planes operating simultaneously for roll, pitch, and yaw axes. Each plane
consists of three regions, a region of zero firing, a region of positive jet firing, and a region of
negative jet firing in the corresponding direction. The firing decision is made based on the
combined rate and attitude error in the direction that reduces error.

Figure 2.2 Phase-Plane Shows Conditions for Jet Firing

35

In this design example we begin with simple models and gradually upgrade them to more complex
ones. As the design progresses we are going to analyze various simulation models with increasing
complexity in terms of spacecraft dynamics and also in control design. To avoid confusion,
therefore, each simulation model with the associated Simulink and data files are placed in separate
folders and they will be analyzed separately. We start with a 3-dof rigid-body ACS simulation that
uses dot-product jet selection logic. Then we apply the same ACS control system to the flex models
created in Section 1 using two separate Flixan methods. We compare the simulation results obtained
from the two models, both in time and also in frequency domain.

The next step is to upgrade the ACS design and to replace it with a fuel optimal jet selection logic
that significantly reduces fuel usage. Following that, we further upgrade the minimum fuel control
logic to accommodate also translational in addition to rotational control. We finally test the full 6-
dof minimum fuel control logic using a non-linear spacecraft model with flexibility, the flex
dynamics being connected in parallel with the previously used non-linear rigid-body model. This
demonstrates a wide variety of options which are available for reaction control modeling and
analysis.

2.2.1 Rigid-Body Non-Linear Simulation

We start the RCS analysis with a simple rigid-body non-linear simulation model in order to
demonstrate the phase-plane and jet-selection logic. The files used in this model are in folder
“…\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\(c)
NonLin RigBody RCS Attitude Control”. The Simulink model is “RB_Sim_RCS.Mdl” shown in
Figure (2.2.1).

36

Rigid Spacecraft Simulation using RCS

Frcs

W_b

Qt

Vehicle
Dynamics

Qc

Qf
qe

Quat Error

rater

atter
f (i)

Phase-Plane
Controller

Qcom

Command
50 deg

body rate

Quaternion Feedback

The spacecraft dynamics are implemented in Matlab function “SV_Dynamics.m”. The spacecraft
outputs are body rate and attitude quaternion. The quaternion error (yellow) block receives the
attitude quaternion command and the quaternion feedback from the spacecraft and calculates the
attitude error which consists only of the 3-axis vector part of the quaternion error, representing
attitude errors in roll, pitch and yaw. The magnitude part of the 4-dimensional quaternion error is
ignored. The Matlab function “qerror2.m” calculates the quaternion error. The phase-plane and jet-
selection logic are coded in Matlab functions “Phase_Plane.m”, and “Jet_Select_dot.m”. Jet-select
is called by the phase-plane logic. The phase-plane parameters such as the dead-band and rate limits
are loaded into Matlab workspace by the initialization file “start.m” which must be executed prior to
the simulation. Other parameters are also loaded, such as, number of jets, thrust, jet locations, thrust
directions, moments of inertia, and cg location. They are used by the jet selection logic to determine
which jets should be fired in order to provide rotation in the direction commanded by the phase-
plane logic.

The attitude command is
defined as a quaternion
rotation from the current
attitude, which is assumed to
be zero, i.e. (0,0,0,1). The
quaternion command is a 4-
dimentional vector
consisting of a direction
about which the vehicle
should rotate, and the angle of rotation. The block [Qcom] is shown in detail in Figure (2.2.2). The
direction “com_dir” is defined in file “start.m”, and the rotation angle (50 deg) is defined inside the
block. After running the Simulink model, execute file “pl.m” which will plot the simulation results,
as shown in figure (2.2.3) below.

1
Qcom

sin

sin(Q/2)

com_dir

direction command

cos

cos(Q/2)

-K-

Q/2

Matrix
Multiply

Product50 deg
Step

37

38

Figure 2.2.3 Rigid-Body Non-Linear System Response to a 50 (deg) command

39

2.2.2 Comparing the Linear Models with Structural Flexibility in Closed-Loop Sims

The next step in our RCS analysis is to check out by means of simulations the two types of flex
spacecraft models that were created in sections 1.1 and 1.2. The first one was created by the flex
spacecraft FE modeling program, and the second one was created by the flight vehicle modeling
program. We want to make sure that similar results are obtained from both models before we
continue any further. The first one has the rigid-body dynamics represented by rigid-body modes
from the FEM, while the second one is using its own rigid-body model and only the flex modes are
taken out of the FEM. The files for the Simulink models are in the same folder “…\Examples\Flex
Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\ (d) RCS Attitude Control
w Flex”. It is a good practice to test and compare these two systems before we move on to more
complex models.

Let us begin with the first simulation which is in file “Sim_Flex_fem_z.mdl” and uses the FEM, see
Figure (2.2.4). The spacecraft system is in file “flex_spacecraft_fem_z.m”. It includes 40 structural
modes and 6 rigid-body modes, a total of 46 modes. It was discretized with a sampling period of
Ts=5 msec, and its title is “RB+Flex Spacecraft with RCS and CMG (Z-Transf)”.

Flex RCS Sim

-K-

d2r

0

Reboost Engine
Thrust

rater

atter
f (i)

Phase-Plane
Controller

Fjet

Feng

wb1

atti

Flex Spacecraft
(discrete)

[1, -2, 3]*10

Atti_cmd
(deg)

Figure 2.2.4 Linear Flex Spacecraft Simulation “Sim_Flex_fem_z.mdl”

The ACS consists of the phase-plane and the dot-product jet selection logic which is sampled
slower, at 20*Ts= 0.1 sec. There is a fuel counter which integrates the sum of jet thrusts:

dtF
nti

i∫ ∑
= ,1

)(. The rate transition blocks separate the flex spacecraft (which is sampled at 5 msec)

from the ACS (which is sampled every 100 msec). The ACS logic is implemented as a Matlab
Function in file “Phase_Plane.m”, and it is similar to the one described in section 2.2.1. The jet-
select output is normalized to unity and it is, therefore, divided by the jet thrust (Th). There is no
translation control yet.

40

Phase-Plane / Jet-Select Logic

(0 to 1)

1
f(i)

K Ts

z-1

int

eu

atter

atter

Sum of
Thrusts

1/z

RT3

ZOH
RT2

ZOH

RT1

MATLAB
Function

Phase Plane
Jet Select

Fuel

Frcs

-K-

1 / Thrust

-K-

-1

eu

 eu

Fuel

Frcs

2
atter

1
rater

Figure 2.2.5 Phase-Plane and Jet Selection Logic

The discrete flex spacecraft block is shown in detail in Figure (2.2.6). Its inputs are 12 RCS jet
forces, and the orbital maneuvering engine thrust (which is not used in this case). The outputs are
attitudes, rates, and accelerations at specific vehicle locations defined in section 1.1 during model
preparation. File “start.m” initializes the spacecraft and ACS parameters for the simulations, and
file “pl.m” plots the simulation data, as shown in figure (2.2.7).

Figure 2.2.6 Discrete Spacecraft State-Space System from file “flex_spacecraft_fem_z.m”, system
originated from the Flex Spacecraft Modeling Program.

41

42

Figure 2.2.7 Simulation Results from “Sim_Flex_fem_z.mdl”

43

The second Simulink model “Sim_Flex_fvp_z.mdl” is almost identical to the first one, but uses the
discrete system “flex_satellite_fvp_z.m”, which was created by the “Flight Vehicle Modeling
Program” in Section 1.2. The spacecraft dynamics block is shown in detail in Figure (2.2.7).

Flex Spacecraft
Discrete Model from FVP

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

2
atti

1
wb1

wb2

wb1

tran

tran
tran

time
time

term

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft
(Z-domain)

dV

dV

atti

atti

att

acc2

K Ts

z-1
Int1

K Ts

z-1
Int

Clock

wb

2
Feng

1
Fjet

acc1

3

3

3
nt

Figure 2.2.7 Discrete Spacecraft State-Space System from file “flex_satellite_fvp_z.m”, system
originated from the Flight Vehicle Modeling Program.

The jet-selection logic output in this model is a little different, because, it uses the FVP spacecraft
system. This system requires the jet thrust inputs to vary between zero and one (one representing
max thrust). The actual thrust value is integrated in the state-space system data. The file “start.m”
initializes both models, and file “pl.m” plots the results from either simulation after completion.

The following plots show the spacecraft response to attitude commands. The attitude converges to
its commanded position. The rates are limited to approximately 0.2 (deg/sec). It is significant to
notice that at the end of the maneuver the vehicle linear velocity and position are not zero. This will
be corrected later by including a translational control logic. The plots show that the responses of the
two models to attitude commands are almost identical. There may be negligible differences between
the two models in the rigid-body data.

44

45

Figure 2.2.7 Simulation Results from “Sim_Flex_fvp_z.mdl”

46

System Comparison in the Frequency Domain

Move down to the subfolder “Frequency Domain Comparison” and run the Matlab file
“run_frequ.m”. This file loads the two spacecraft systems “flex_spacecraft_fem_s.m” and
“flex_spacecraft_fvp_s.m” that were created using different methods and calculates the frequency
responses of the open-loop systems including linearized controls. The frequency responses are
shown plotted together in Bode and Nichols charts in Figure (2.2.8). The results are almost identical
proving a very good match between the two modeling approaches. This is an encouragement to
continue the analysis further.

47

Figure 2.2.8 Frequency domain plots show a very good comparison between the two models

48

A typical attitude control Reaction Control System (RCS) consists of the phase-plane logic and the
jet selection logic. The phase-plane logic determines the direction where to apply a torque on the
spacecraft in order to correct for attitude errors and it generates a rate change command to the jet
selection logic. In a 12 jet, dot-product based, jet selection logic, 2 to 4 jets are selected which are
contributing a positive torque in the demanded direction, and the logic fires those jets for a short
period to correct the attitude error. The direction of motion, however, may be near but it is rarely
along the commanded direction, which causes an error to develop in a different direction which
corresponds to a new set of jets to be selected and fired in the next cycle. It is common sense,
therefore, to assume that in order to rotate the spacecraft about a commanded direction more
optimally in terms of fuel usage, after selecting the jets which contribute a positive torque in that
direction, not all of them should be fired at the same level. Instead, if we assume that the flow rate is
proportional to thrust, the ones which contribute more torque should be allowed to fire at higher
thrusts than the ones which contribute less in that direction. But this is impossible because most
reaction control jets can only fire at constant thrust. They are either “on” or they are “off.” In this
case we can use pulse width modulation. We assume that the control cycle period is relatively long
enough (0.1 sec) to allow sufficient room for a jet pulse width modulation within the cycle. In the
beginning of the control cycle we select 3 jets and turn them on together. Then we allow the most
contributing jets to stay on longer within the cycle than the less contributing jets, an “on-time”
proportional to the amount of contribution of the selected jets. The jet control logic commands the
jets every 0.1 sec. When a jet is selected it receives also its “on-time”, which is in multiples of 5
msec, a minimum of 5 msec, and a maximum of 95 msec. So the attitude control software does not
have the responsibility to turn “off” the jets.

But how do we determine how long should each of the selected jets stay “on” during the control
cycle? Let us assume that three jets out of 12 were selected (i, j, and k) and their corresponding
vehicle acceleration vectors from each jet are: (ai , aj , ak) respectively. If during the cycle we turn
them on for a period of (ti , tj , tk) respectively, and there are no other disturbances, at the end of the
cycle the vehicle rate (δω) will be

() []tA
t
t
t

aaa kji

k

j

i

kji ,,=















=ωδ (2.4.1)

Now if (δωc) represents the commanded change in vehicle rate at the end of the cycle, and that the
vehicle does move much during the short cycle, then we can invert the matrix and solve for the on-
times. We assume of course that the jets were properly selected for the commanded direction to
provide positive on-times. Otherwise, it may result into negative on-times.

[] ckjiAt ωδ1
,,

−= (2.4.2)

49

Assuming that (fi , fj , fk) are the corresponding amounts of fuel flow rates for the three thrusters
selected, the total amount of propellant used by jets (i, j, and k) to achieve a commanded change in
rate (δωc) is

() ()[] ckjikji

k

j

i

kjikji Afff
t
t
t

fffp ωδ1
,,,,

−=















= (2.4.3)

The propellant usage factor pi,j,k is the criterion used for selecting 3 jets from a total of 12 jets. The
thrust directions of the jets on the spacecraft are assumed to be properly selected so that there are
always 3 jets, at least, which provide a positive torque in any commanded direction. For a given
change in rate command (δωc), the jet-select logic first chooses 3 jets that minimize equation (2.4.3)
using function Jet_Select_3dof, and it calculates also the “on-times” from equation (2.4.2).

2.4.1 Upgrading the ACS Model with the Min Fuel Logic

The Simulink model “Sim_Flex_3rot.Mdl” shown in Figure (2.4.4) implements the minimum fuel
attitude control logic. It can be found in folder “\Flixan\ Examples\Flex Agile Spacecraft with
SGCMG & RCS\Analysis\ (e) Min Fuel RCS Control 3-Rot Flex”. It consists of the RCS attitude
control system which operates at 0.1 sec sampling period, and the flexible spacecraft dynamics
which is sampled every 5 msec. The roll, pitch, yaw attitude command is applied on the left side.

rate

ater
Fjet

Phase-Plane

Fjet

wb1

atti

Flex Spacecraft

[1 3 2]*10

Attitude Change
Command (deg)

-K-

Figure 2.4.4 The 3-dof Simulation Model (Sim_Flex_7R.Mdl) for Min Fuel ACS

The orange ACS block is shown expanded in Figure (2.4.5). It consists of the phase-plane logic
which is implemented in Matlab function “Rotat_PP3.m”. It receives the attitude error and body
rate signals. The phase-plane calculates the commanded change (δω) in vehicle rate (roll, pitch, and
yaw), that feeds into the jet selection logic, shown in Figure (2.4.6), which turns the thrusters “on”
or “off” as needed to maneuver the vehicle. Since the system operates at two different rates, 0.005
sec and 0.1 sec, rate transitioning blocks are used in the interfaces between the Simulink blocks.

50

Phase-Plane Logic

Rate Change
Command

dw(3)

3-dof
Jet-Select

Logic

Normalized
Jet Forces (0 to 1)

1
Fjet

K Ts

z-1

int

dw
atter

atter

-K- Th

Sum of
Thrusts

1/z

RT3

ZOH
RT2

ZOH

RT1
1/z

RT

wdc Fjet

Jet Select

Fuel
Frcs
Frcs

FrcsMATLAB
Function

3-dof-Rot
Phase-Plane

dw

 dw

Fuel

 Fuel

2
ater

1
rate

ACS error

Figure 2.4.5 Attitude Control System consisting of Phase-Plane, and Jet-Select Logic

Figure (2.4.6) shows the implementation of the jet selection logic. The function f=
Jet_main_3dof(sync, δω), is called by the Simulink model jet selection logic block, and calls the
function [js, t]= Jet_Select_3dof(δω) which performs a jet search, and selects 3 among the 12 jets
that minimize equation (2.4.3). The input (δω) is the change in vehicle rate (in roll, pitch, and yaw)
commanded by the phase plane logic. The function outputs are the selected jet numbers the array
js(.) and the corresponding on-times for each jet in array t(.).

The input “sync” is a saw-tooth signal that synchronizes the jet turning-off times in the simulation,
not in the actual hardware. In the beginning of the control cycle the 3 selected jets are turned “on”.
They remain on until the logic turns them “off” sequentially, within the 0.1 sec control cycle,
according to their “on-times” t(i). The cycle repeats every 0.1 sec interval with new jets and on-
times. The turning-off times during the 0.1 sec interval occur in multiples of 5 msec. In the actual
hardware implementation each jet that is turned on receives also its “on-time” in the beginning of
the cycle, and it has the logic to turn itself “off” when its on-time expires.

Angular Rate change command

Jet Forces

Controls the duration
of jets firing w ithin
the 0.1 sec period 1

Fjet

MATLAB
Function

Jet_main_3doflim

10 Hz
Synchro
Signal

-K-

1
wdc

Figure 2.4.6 Minimum Fuel, 3-dof, Jet Selection Logic

51

The flexible spacecraft model is shown in Figure (2.4.7). It contains the discretized system “Large
Flexible Spacecraft with RCS (Z-Transf)” described by state-difference matrix equations sampled
every 5 msec. It is loaded from file “flex_spacecraft_fvp_z.m”. The inputs to the system are the 12
jet forces. The orbital maneuvering engine is not used in this case. We will use it later when we
analyze fuel sloshing. The outputs are attitude rates, and accelerations at the navigation base plus at
other locations already described. The vehicle translation is approximated by integrating the
acceleration twice.

Flex Spacecraft Dynamics

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

2
atti

1
wb1

wb2

wb1

wb
wb

tran

tran
tran

time
time

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft
(Z-domain)

atti

atti

att

acc2

Term

K Ts

z-1
Int1

K Ts

z-1
Int

Clock

1
Fjet

3

acc1

3

3

3nt

11

Figure 2.4.7 Flex Spacecraft Discrete Model “flex_spacecraft_fvp_z.m” Sampled at 5 msec

The file “start.m” initializes the simulation parameters before running it. The file “pl.m” plots the
simulation data, as shown in Figure (2.4.8). The spacecraft attitude responses are similar to the
responses obtained from the dot-product ACS logic in Figure (2.2.8). The most interesting result is
the fuel usage which is reduced to more than 50% by the fuel minimization logic in comparison to
the previous logic, as intended.

Notice, that increasing the sampling period increases also fuel consumption. The minimum fuel
logic is constrained to longer control cycles because thrusters have delays and also they cannot be
turned on for a very short time. In the comparison shown, the two jet selection algorithms were
sampled using the same 0.1 sec period. If the dot-product logic was allowed to be sampled at a rate
faster than 0.1 sec, the fuel savings from this fuel optimal method wouldn’t be as much. That is,
because it is constrained to a slower rate but the other one is not.

52

53

Figure 2.4.8 Spacecraft response to attitude command using the minimum fuel jet-select logic shows
significant fuel saving in comparison to the simple dot-product logic

54

The attitude control logic that we have used so far completely ignores the translational position and
velocity state of the spacecraft at the end of a maneuver. In some cases we may want to maneuver
the spacecraft attitude while maintaining its current position and velocity, without any linear
translation, or we may want to simultaneously command attitude and position changes, such as, for
example, during docking. In this section we shall extend the min fuel jet selection logic to 6
degrees-of-freedom (6-dof) control for positioning the spacecraft in both rotational and translational
directions. The extended 6-dof logic consists of two phase-planes, a rotational phase-plane similar
to the one used in section 2.4, and a translational phase-plane that controls spacecraft linear position
and operates very similar. The extended 6-dof jet-select logic receives (δω) commands from the
rotational phase-plane, and (δv) commands from the translational phase-plane. Then it performs a
search to identify 6 jets that provide maximum contribution towards the commanded rotational and
translational directions combined.

Let us now assume that six jets out of 12 are selected (i, j, k, l, m, and n) and that their
corresponding vehicle angular acceleration vectors from each jet are: (ai , aj , ak , al , am , an)
respectively. Also the translational acceleration vectors from each jet are: (bi , bj , bk , bl , bm , bn)
respectively. The rotational and translational accelerations for a jet (i) are calculated by the
following equations

()
v

ii
iiiivi M

ufbfudJa =×= −1

Where:
di is the moment arm vector of the thruster from the CG
ui is the thruster direction unit vector
fi is the jet thrust
Mv Jv is the vehicle mass and moment of inertia matrix

If we turn on the 6 selected jets together in the beginning of the control cycle period and leave them
on for periods of (ti , tj , tk , tl , tm , tn) respectively, then when the longest firing jet is turned off the
vehicle angular and translational rate (δω, δv)’ is:

[]tA

t
t
t
t
t
t

bbbbbb
aaaaaa

v x

n

m

l

k

j

i

nmlkji

nmlkji
)66(=



































=








δ
ωδ

 (2.5.1)

If (δω, and δv)c represent the commanded changes in vehicle angular and translational rate at the
end of the 0.1 sec cycle, then we can solve for the on-times of the 6 jets by inverting the A matrix.

55

We assume of course that the jets are properly selected for the commanded directions in order to
provide positive on-times, otherwise, it will result into negative on-times.

[]
c

x v
At 








= −

δ
ωδ1

)66((2.5.2)

Assuming that (fi , fj , fk , fl , fm , fn) are the corresponding amounts of fuel flow rates for the six
thrusters, the total amount of propellant used by the 6 jets to achieve the commanded (δω, and δv)c
is

() [] 







= −

v
Affffffp xnmlkjinmlkji δ

ωδ1
)66(,,,,, (2.5.3)

The propellant usage factor pi,j,k,l,m,n is the criterion for selecting 6 jets from a total of 12 jets. We
also assume that the thrust directions of the jets are properly selected so that there are at least 6 jets
which provide a positive torque or force in any commanded direction. For a given commanded
(δω, and δv)c, the jet-select logic first chooses 6 jets that minimize equation (2.5.3) using function
Jet_Select_6dof, and it calculates also the “on-times” from equation (2.5.2).

2.5.1 Rotational plus Translational 6-dof Simulation Model, using the Minimum
Fuel Jet Selection Logic

The files for this simulation model are in folder “C:\Flixan\Examples\Flex Agile Spacecraft with
SGCMG & RCS\Reaction Control System Analysis\ (f) Min Fuel RCS Control 6-dof Flex”. The
Matlab file “start.m” initializes the simulation parameters. The Simulink model that implements the
fuel optimal 6-dof control logic is “Sim_Flex-6dof.Mdl” and it is shown in Figure (2.5.4). It consists
of the rotational and translational phase-planes (implemented in functions “Rotat_PP3.m” and
“Translat_PP.m”) which operate at 0.1 sec and generate the commands (δω, and δv)c driving the 6-
dof jet selection logic. The jet selection logic calls functions “Jet_main_6dof.m”,
“Jet_Select_6dof.m”, “Jet_Select_rotat” and “Jet_Select-transl” which select 6 jets and their
corresponding “on-times”, for each 0.1 sec cycle. The jet forces drive the flex spacecraft dynamics
(green block) which is the system “flex_spacecraft_fvp_z.m” used earlier and sampled at 5 msec.
The inputs to the phase-planes are attitude and translation delta commands.

56

Figure 3.5.4 Minimum Fuel 6-dof Simulation Model “Sim_Flex_6dof.mdl”

In this configuration the RCS controls the vehicle in all 3-translational and 3-rotational directions.
The rotational phase-plane issues a change in body rate command and it is implemented in Matlab
function “Rotat_PP3.m” which. The translational phase-plane issues a change in velocity command
and it is implemented in Matlab function “Translat_PP.m”. Figure (2.5.5) shows the Simulink
implementation of the jet selection logic.

Figure 2.5.5 Minimum Fuel 6-dof Jet Selection Logic

Inside the jet select logic, the change in rate and velocity commands are inputs to Matlab function
f= Jet_main_6dof(sync, δω, δv), which calculates the jet forces f(i). This function calls the
function [js, t]= Jet_Select_6dof(δω, δv) which performs a jet search, and selects 6 among the 12
jets that minimize the fuel equation (2.5.3), where (δω, δv) are the change in vehicle rate and
velocity commanded by the phase planes. The logic selects 6 jets that best satisfy the combined
translational and rotational phase-plane demands. The selected jet numbers are given in the array
js(.), and the corresponding on-times in array t(.). The input “sync” is a saw-tooth signal that
synchronizes the jet turning-off times in the simulation, not in the actual hardware. In the beginning
of the control cycle all 6 selected jets are turned “on”. The logic turns them “off” sequentially,

57

within the 0.1 sec control cycle, according to their on-time values t(i). The cycle repeats every 0.1
second with different jets and on-times. The turning-off times during the control cycle intervals
occur in multiples of 5 msec. In the actual hardware implementation each jet receives its “on-time”
in the beginning of the 0.1 sec cycle when they get turned-on and it has the logic to turn itself “off”
in multiples of 5 msec intervals. The file “start.m” initializes the simulation parameters, and the file
“pl.m” plots the simulation data.

Figure (2.5.6) shows attitude and translation simulation results obtained from the 6-dof simulation
model “Sim_Flex_6dof.mdl”. The spacecraft attitude responses are similar to the responses obtained
from the 3-dof simulations, but in this case the vehicle does not translate as it did before, but it is
holding position while maneuvering in attitude. Of course, this is achieved at the expense of more
jet firing and fuel usage.

58

59

Figure 2.5.6 Attitude maneuver using the 6-dof minimum fuel model, maintains position during
maneuvering

60

There is a tank inside the spacecraft that has a spherical shape and contains fuel for the RCS jets.
The spacecraft motion causes the fuel to move inside the tank and it is creating disturbance forces
on the spacecraft which has the potential to interfere with operations or even cause instability in the
control system. There is a need, therefore, to capture the fuel sloshing dynamics in a mathematical
model that can be combined with the spacecraft model. Linear spring-mass or pendulum models
typically used in launch vehicles are not applicable here because the spacecraft is at zero or very
low g and the fuel is not behaving like a linear pendulum. It is reasonable, therefore, to assume that
the sloshing fuel will induce a bigger disturbance on the spacecraft when it is lumped together like a
soft mass ms that can slide or bounce against the inner surface of the tank as the vehicle translates
and rotates in space, and not when it is spread thin inside the tank.

There are a couple of conceptual models to capture the lumped fuel motion and its reaction forces
on the tank, both leading to the same equations. One model assumes that the slosh mass ms is soft
and it behaves like a 3-dimensional elastic pendulum. The mass is attached to a tether, and the other
end of the tether is attached to the center of the tank, as if as there is a hook at the center of the tank.
To capture the elasticity of the mass we insert a spring between the mass and the tether end. When
the string is stretched the reaction forces on the vehicle are applied at the tank center through the
tether. The soft mass either slides around the inside surface of the tank with the string stretched or it
floats inside the tank when the string is slack, in which case it does not apply any force on the tank.
When the mass distance from the tank center exceeds the length of the tether (r) the spring stretches
and applies a force at the center through the tether. In another visualization the mass softly splashes
against the inner surface of the tank without disintegrating.

There is one additional feature needed to prevent excessive deflections of the slosh mass and to
contain it within the walls of the tank. We use a non-linear spring that has a stiffness coefficient
ks(δ) increasing parabolically with extension (δ), that is 2

2
1 ccks += δ . As the mass approaches the

tank surface the radial string force becomes sufficiently high to constrain the mass within the tank
walls. So the soft mass can either slide parallel to the surface, or float inside the tank, or bounce
against the surface. It can be pictured as shown in Figure (2.6.1), where the fixed length of the
string is r, where r is about half the size of the tank radius r0, and there is a non-linear spring
between the end of the string and the center of slosh mass ms.

61

Figure 2.6.1 Conceptual Illustration of the Non-Linear Slosh Pendulum Model

Note, the model parameters, such as the axial and tangential damping coefficients, the length of the
tether (r), and the non-linear spring constants are derived from data derived from computational
fluid dynamics models. The parameters are adjusted to match the oscillations frequency and rate of
decay of the CFD responses. The non-linear spring parameters c1 and c2 are adjusted to capture a
realistic behavior of the liquid mass as it hits a surface of the tank due to vehicle accelerations.

Another conceptual model that captures the same dynamic effect is to assume that the slosh mass
behaves like a soft ball, rolling and bouncing inside a sphere which is approximately half the tank
radius, applying forces on the tank perpendicular to the tank surface. Since the tank is spherical the
reaction forces always pass through the tank center, same as the soft pendulum model.

62

2.6.1 What is the worst fuel level?

Before we start analyzing the sloshing problem we
must determine: what is the fuel level where the slosh
disturbance on the vehicle is maximized. When the
tank is almost empty by common sense we know that
the sloshing forces are negligible. Also, when the tank
is full there is no fuel motion and therefore there is no
disturbance. The answer is obviously somewhere in
between and we must, therefore, determine what fuel
level maximizes the slosh disturbance and use that
fuel level in the analysis in order to be on the
conservative side.

Let us assume a spherical tank of radius r0, volume
V0, holding a total fuel mass M0. The fuel is rotating
around the inside surface at an angular rate ωs held
together under the influence of the centripetal force. Its density is (ρ), where:

3
0

0

0

0

4
3

r
M

V
M

π
ρ == (2.6.1)

Assuming that the fuel surface is almost flat, let us calculate the fuel volume as a function of fuel
level height (h)

() () ()

() 





 −=

−=−= ∫∫

3

2

0
2

0

2
0

0

2
0

2
0

hrhhV

dhhhrdhxrhV
hh

π

ππ
 (2.6.2)

The fuel mass can be calculated as a function of the fuel surface height or as a function of the
surface distance from the tank center x0.







 −+=






 −= 0

2
0

3
0

3
00

2

3
1

3
2

3
xrxrhrhms πρπρ (2.6.3)

We can also derive equations for the tank fill ratio fr as a function of fuel height (between zero and
one) and the pendulum length lp between the center of the tank and the fuel center of mass.

() ()







 −

−
=

−
=

3
4

2
4
3

0

2
0

3
0

0
2

hr

hrl
r

hrhf pr (2.6.4)

It seems reasonable to assume that the disturbance on the vehicle will be maxed when the slosh
moment of the liquid from the tank center is maximized. The slosh moment is equal to the liquid
mass times the distance of its center of mass from the tank center.

63

()

()22
0

2
0

22
0

4

0

0

0

0

xrxm

dxxrxdmxxm

ss

r

x

r

x
ss

−=

−== ∫∫
πρ

πρ
 (2.6.5)

The disturbance on the vehicle is maximized when

() 02
0

2
00 =−= rxxmoment

dx
d (2.6.6)

This happens when x0=0, that is, when the tank is half full. By combining equations (2.6.3) and
(2.6.5) we can solve for the slosh mass distance from the tank center xs

()






 −

−
=

3
4 0

2

22
0

2
0

hrh

xrxs (2.6.7)

As an alternative approach to calculating max disturbance conditions, let us assume that the liquid
mass is spinning inside the tank. It is obvious to assume that the disturbance on the vehicle is
maximized when the moment of inertia (Islosh) of the liquid mass about the center of the tank is
maximized, where:

()









−+=









−=−= ∫

3515
2

53
3
0

2
0

5
0

5
0

532
022

0
2

0

0

0

0

xrxrI

xxrdxxrxI

slosh

r

x

r

x
slosh

πρ

πρπρ
 (2.6.8)

The slosh moment of inertia is maximized when

() 02
0

2
0

2
0 =−= rxxI

dx
d

slosh (2.6.9)

This happens again when x0=0, and the fuel height 0rh = , that is, the worst disturbance condition is
when the tank is half full. In this case the pendulum length, or the slosh mass distance from the
center from equation (2.6.7) is

08
3 rr = (2.6.10)

In our subsequent slosh analysis, therefore, we shall assume that the fuel tank is half full, and the
sloshing pendulum mass is equal to half of the full tank mass, and the soft pendulum length (r) is
only 3/8 of the actual tank radius (r0).

64

2.6.2 Zero-g Non-Linear Slosh Model

The acceleration (at) of the spacecraft at the center of the tank is

CGstnkssbst lxldwhereada −+=+×−= :ω

Where:
ds is the distance of the slosh mass from the spacecraft CG,

bω is the spacecraft angular acceleration,
as is the spacecraft translational acceleration at the CG.

When the pendulum string is stretched, the tension at the string Fst can be expressed by the
following equation

()
()
() frictionviscousaxialuxk

deflectiontodueforcespringlinearnonk
massofrateangulartodueforcelcentripetarmF

sd

s

sst

11

2

•+
−+

+=





δδδ
θδ

Where:
θ is the angular rate of the pendulum relative to tank,
ks(δ) is the non-linear spring constant of the sluggish mass which is a function of spring
 displacement (δ), 2

2
1 ccks += δ

kd1 is the axial damping coefficient
sx is the slosh mass velocity relative to the tank, dotted with

u1 which is the unit vector from the tank center to the slosh mass

s

s

x
xu =1

The inertial acceleration of the slosh mass consists of two components, the acceleration of the mass
relative to the tank sx , plus the inertial acceleration of the tank at, and it is the result of axial forces
from the string along u1, plus viscous forces as it rotates around rubbing against the inside of the
tank along u2.

() () 221 ukuFaxm dsttss θ −−=+

Where:
kdv is the tangential damping coefficient of the mass as it slides along the surface creating a
force parallel to the surface resisting the mass motion along u2
u2 which is the unit vector parallel to the surface in the velocity direction

()[]112 uuuu
x
xu v

s

s
v ××==





The disturbance force on the spacecraft Fs/c is equal and opposite to the force on the slosh mass and
the torque on the spacecraft is obtained by cross-multiplying Fs/c with the distance ds of the slosh
mass from the spacecraft CG.

65

()
() CGstnkscsscs

dstcs

lxldwhereFdT
ukuFF

−+=×=
+=

://

221/ θ

The velocity and position of the slosh mass ms with respect to the tank are obtained by integrating
the slosh mass acceleration starting from velocity and position initial conditions v0 and p0

∫∫ +=+=
t

ss

t

ss dttxpxdttxvx
0

0
0

0)()(

The slosh mass angular rateθ is obtained by resolving the slosh mass velocity sx along the u2
direction. The pendulum angleθ is a function of the x-direction component of vector u1.

()[]1cos 1
1

2 uu
r

xs −=•







+
= θ

δ
θ



2.6.3 Implementing and Testing the Zero-g Slosh Model alone

Before coupling the slosh equations with the spacecraft dynamic model we are going to create a
separate zero-g pendulum slosh model “Slosh.mdl”, shown in Figure (2.6.2). This system will be
used to test the slosh dynamics alone under the influence of external forces, starting from an initial
condition of ms. The slosh equations are implemented in Matlab function “Slosh_0g.m”. The inputs
to the Simulink model are: spacecraft rotational acceleration vector, and translational acceleration
vector at the CG, coming from the vehicle dynamic model. The spacecraft accelerations induce
forces on the mass and opposite reaction forces on the vehicle. The slosh mass acceleration relative
to tank sx is integrated twice to calculate the mass velocity and position relative to the tank. The
model output is the reaction force vector which is applied to the vehicle model at the center of the
tank. The forces are applied only when the spring is stretched, that is, 0>δ . The file “start.m”
loads the tank mass properties and initializes the mass position and velocity relative to the tank. The
file “plsl.m” plots the simulation parameters.

66

Zero-g Slosh
Pendulum Model

1
Fv

K Ts

z-1

integr
x0

delta

Xsdd

Xsd

Xsd

Xs

Wsl

Wsl

Wsl

MATLAB
Function

Slosh_0g
Fv

1/z

Delay

Acc

Acc CG

u2

 u2

u1
 u1

delta

 delta

Xsdd
 Xsdd

Xsd

 Xsd

Xs
 Xs

Fv
 Fv

1
Acc

x x-dot

Figure 2.6.2 Zero-g Pendulum Slosh Model “Slosh.Mdl” that uses Matlab function “Slosh_0g.m”

Figure (2.6.3) shows the slosh model response when there are no external accelerations, but the
mass is initially placed in the extreme +y position while at the same time it has a velocity of 0.5
(ft/sec) in the –x direction. So it rolls inside the tank surface in the x-y plane while it is slowing
down due to surface damping. As it slows down it applies less reaction force on the tank.

Figure (2.6.4) shows another situation where the mass is in the extreme +y position and it has no
velocity, but the spacecraft is accelerating in the +x direction. This causes the mass to roll inside the
tank and oscillate in ±y direction passing through zero. Eventually, damping causes the slosh mass
to slow down and to converge in the –x direction. Also, the force on the vehicle ends up in the –x
direction. Notice, that the oscillation in the x direction is twice the frequency of the y oscillation.
This model will now be combined with the flex vehicle model.

67

Figure 2.6.3 Slosh mass rolling inside the tank due to initial velocity

68

Figure 2.6.4 Slosh mass oscillations under constant +x acceleration

69

Now that we have developed our rigid-body and flex spacecraft models, and we have successfully
analyzed the fuel minimization algorithm in both rotational and translational directions, and also
tested the zero-g slosh model, the next step is to integrate all these models together in a 6-dof
simulation that will be used to analyze the simultaneous, attitude and translation control while
sloshing. Actually, we are going to develop two integrated models, a linear, and a non-linear model
for comparison. The simulation files in this analysis are located in folder “C:\Flixan\Examples\Flex
Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\(h) NonLin
RB+Slosh+Flex 6-dof RCS Attitude Control”. The file “start.m” initializes the spacecraft
parameters. The slosh mass is initialized with an initial position xs0, and velocity xsd0 relative to the
center of the tank.

2.7.1 Linear 6-dof Model with Slosh and Flex

The linear Simulink model is in file “Sim_Lin_Flex_Slo_6dof.mdl”, and shown in Figure (2.7.1).
For spacecraft dynamics it uses the discrete state-space model file “flex-spacecraft-fem_z.m”, title:
“RB+Flex Spacecraft with RCS and CMG (Z-Transf)”, which has 6 rigid-body modes and 40 flex
modes, and was created using the flex spacecraft modeling program.

6-dof
Jet-Select

Logic

pos

v el
dVc

Translational
Phase-Plane

[40 0 0]*1

Translation
Command (feet)

rate

ater
dwc

Rotational
Phase-Plane

dWc

dVc
Fjet

Jet Select

Fjet

Feng

wb #2

atti

pos

dV

Flex
Spacecraft

[1 -2 3]*0

Attitude Change
Command (deg)

-K-

angular rate

rotational attitude

v elocity

translational position

Figure 2.7.1 Min Fuel 6-dof Simulation Model “Sim_Lin_Flex_Slo_6dof.mdl” that includes Slosh and
Flexibility

The model uses the two separate rotational and translational phase-planes and the 6-dof fuel
minimizing jet selection logic that was described in Section (2.5). The simulation is running at 5
msec, and the phase-planes are running at 100 msec. Figure (2.7.2) shows the spacecraft model in

70

detail. The zero-g slosh model is shown closing a mechanical feedback loop between the vehicle
acceleration at the center of the tank and the force applied at the tank center. The slosh model and
other spacecraft parameters are initialized by file “start.m”. The fuel slosh block uses the Matlab
function “f=Slosh_0g(Acc)” which calculates the reaction forces applied at the tank by the slosh
mass as a function of the tank accelerations. The simulation is initialized automatically, and when it
completes it runs file “pl2.m” to plot the results. Figure (2.7.3) shows the results from an attitude
maneuver. The position is constrained to within one foot of error while maneuvering.

Discrete Flex Spacecraft Dynamics
(FEM Model)

% Inputs = 19
% 1 Force No 1 Applied at Node # 8 (lbf)
% 2 Force No 2 Applied at Node # 9 (lbf)
% 3 Force No 3 Applied at Node # 10 (lbf)
% 4 Force No 4 Applied at Node # 11 (lbf)
% 5 Force No 5 Applied at Node # 12 (lbf)
% 6 Force No 6 Applied at Node # 13 (lbf)
% 7 Force No 7 Applied at Node # 14 (lbf)
% 8 Force No 8 Applied at Node # 15 (lbf)
% 9 Force No 9 Applied at Node # 16 (lbf)
% 10 Force No 10 Applied at Node # 17 (lbf)
% 11 Force No 11 Applied at Node # 18 (lbf)
% 12 Force No 12 Applied at Node # 19 (lbf)

% 13 Force No 13 Applied at Node # 5 (lbf)

% 14 Force No 14 Applied at Node # 7 (lbf)
% 15 Force No 15 Applied at Node # 7 (lbf)
% 16 Force No 16 Applied at Node # 7 (lbf)

% 17 Torque No 1 Applied at Node # 6 (ft-lb)
% 18 Torque No 2 Applied at Node # 6 (ft-lb)
% 19 Torque No 3 Applied at Node # 6 (ft-lb)

% Outputs = 21
% 1 X-Accelerat. Sensed at Node # 2 (ft)
% 2 Y-Accelerat. Sensed at Node # 2 (ft)
% 3 Z-Accelerat. Sensed at Node # 2 (ft)

% 4 X-Accelerat. Sensed at Node # 4 (ft)
% 5 Y-Accelerat. Sensed at Node # 4 (ft)
% 6 Z-Accelerat. Sensed at Node # 4 (ft)

% 7 X-Accelerat. Sensed at Node # 7 (ft)
% 8 Y-Accelerat. Sensed at Node # 7 (ft)
% 9 Z-Accelerat. Sensed at Node # 7 (ft)

% 10 X-Rotation Sensed at Node # 2 (radian)
% 11 Y-Rotation Sensed at Node # 2 (radian)
% 12 Z-Rotation Sensed at Node # 2 (radian)

% 13 X-Rot. Rate Sensed at Node # 2 (radian)
% 14 Y-Rot. Rate Sensed at Node # 2 (radian)
% 15 Z-Rot. Rate Sensed at Node # 2 (radian)

% 16 X-Rot. Rate Sensed at Node # 1 (radian)
% 17 Y-Rot. Rate Sensed at Node # 1 (radian)
% 18 Z-Rot. Rate Sensed at Node # 1 (radian)

% 19 X-Rot. Rate Sensed at Node # 4 (radian)
% 20 Y-Rot. Rate Sensed at Node # 4 (radian)
% 21 Z-Rot. Rate Sensed at Node # 4 (radian)

4
dV

3
pos

2
atti

1
wb #2

wb
wb2

wb #4

wb

tran

tran

tran

time

time

-K-

r2d1

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft_fem
z-domain

dV
dV

atti
atti

att

acc #7

acc #4

AccFv

Zero-g Slosh
Pendulum Model

Tcmg

K Ts

z-1
Int1

K Ts

z-1

Int

Clock

2
Feng

1
Fjet

Figure 2.7.2 Spacecraft Dynamics consists of the flex system “flex_spacecraft_fem_z.m” and the Slosh
Model Function “Slosh_0g.m” closing a mechanical feedback loop

71

Figure 2.7.2 Performs attitude maneuver as expected

72

Figure 2.7.2 Position error does not exceed one foot

73

Figure 2.7.2 Slosh mass activity relative to tank and slosh force on the vehicle

74

2.7.2 Non-Linear 6-dof Model with Slosh and Flex

The non-linear Simulink model is in file “Sim_NonLin_Flex_Slo_6dof.mdl”, shown in Figure
(2.7.3). This model uses quaternion for attitude control and calculates a quaternion error for attitude
feedback. The quaternion command (left) is calculated by combining the commanded angle of
rotation and the rotation axis, see Figure (2.7.4). The attitude feedback signal (qe) consists of the 3-
dimensional vector part of the quaternion error. For small angles qe= half the attitude error vector.

6-dof
Jet-Select

Logic

pos

v el
dVc

Translational
Phase-Plane

[5 15 -10]*0

Translation
Command (feet)

rate

ater
dwc

Rotational
Phase-Plane

Qf

Qc
qe

Quat Error

Frcs

Feng

Tdist

wb #2

quat

pos

dV

Non-Linear Rigid
& Flex Combined

dWc

dVc
Fjet

Jet Select
Qcom

Command
30 deg

angular rate

quaternion attitude

v elocity

translational position

Figure 2.7.3 Min Fuel 6-dof Simulation Model “Sim_NonLin_Flex_Slo_6dof.mdl” that includes Slosh
and Flexibility

1
Qcom

sin

sin(Q/2)

com_dir

direction command

cos

cos(Q/2)

-K-

Q/2

Matrix
Multiply

Product

50 deg
Step

Figure 2.7.4 Quaternion Command Generator

75

The spacecraft dynamics is shown in Figure (2.7.5). It consists of two dynamic systems in parallel
with the slosh model in the feedback path. It uses the 6-dof non-linear rigid-body dynamics which is
implemented in Matlab function “RB_Dynamics.m”. From the forces and moments this function
calculates the velocities, angular rates, and integrates the quaternion from the body rates. It
calculates also vehicle accelerations at three locations: the navigation base, at one of the solar array
joints, and at the center of the fuel tank.
The flexibility model is connected in parallel with the rigid-body model. The flex model uses the
state-space system file is: “flex_only_fem_z.m”. This system is discretized at 5 msec, it has no rigid
modes, but consists only of 40 flex modes starting from mode #7. It was created using the flex
spacecraft modeling program, and its title is “Flex Only Spacecraft with RCS and CMG (Z-Transf)”.
Both spacecraft models are excited with the same forces and torques. Their outputs are added
together and the output signals consist of non-linear spacecraft responses with flexibility
superimposed.

The slosh model is also included in the feedback loop, connected between the vehicle acceleration
at the center of the tank and the input force at the tank. The slosh model uses the Matlab function
“Slosh_0g.m” which calculates the reaction forces applied by the slosh mass as a function of the
spacecraft accelerations at the tank. The simulation is initialized by file “start.m” and when it
completes it plots the results using file “pl.m”.

76

Tr
an

sl
at

io
n

Dy
na

m
ic

s

Bo
dy

 R
at

es
 a

t
No

de
s

#2
 a

nd
 #

4

Ac
ce

le
ra

tio
ns

at
 N

od
e

2
an

d
4

At
tit

ud
e

Qu
at

er
ni

on

Sl
os

h
Fo

rc
e

at
 th

e
Ta

nk

M
ai

n
En

gi
ne

Fo
rc

s

RC
S

Je
t

Fo
rc

es
 (l

bf
)

N
on

-L
in

ea
r R

ig
id

 +
 F

le
x

+
Fu

el
 S

lo
sh

in
g

D
yn

am
ic

 M
od

el

Ac
ce

le
ra

tio
n

at
th

e
Ta

nk
 C

en
te

r

4dV

3po
s

2 qu
at

1
wb

 #
2

wb
4

wb
 #

4
wb

2
wb

 #
2

tra
n

tra
n

dVdV

ac
c4

ac
c

#4

ac
c2

ac
c

#2

Ac
c

FvZe
ro

-g
 S

lo
sh

Pe
nd

ul
um

 M
od

el

Fr
cs

Fe
ng

Td
is

t

Ft
an

k

qu
at W
b

ac
c

#2

ac
c

#4

ac
c

#7

Ri
gi

d
Dy

na
m

ic
s

K
Ts z-
1

In
t1

K
Ts z-
1 In
t

Fj
et

Fe
ng

Tc
m

g

Ft
an

k

wb
 #

2

wb
 #

4

ac
c

#2

ac
c

#4

ac
c

#7

Fl
ex

ib
ili

ty
 O

nl
y

3
Td

ist2
Fe

ng

1Fr
cs

77

78

Force @ Tank Cent

MEng Force

RCS Forces
f(i)

Body
accelerat

body
rates

State Derivatives

Tank
Centre

Nav
BaseSA

joint

Body rate

Quaternion
Attitude

State Vector
Integrator

5
acc #7

4
acc #4

3
acc #2

2
Wb

1
quat

wb

time
time

K Ts

z-1
integr
x-ini

accel

Wb_dot

MATLAB
Function

RB_Dynamics

q

Q-View

emu

em

Clock

wbd

 wbd

4
Ftank

3
Tdist

2
Feng

1
Frcs

RCS Forces

quatern

v el-dot

wbd

qt-dot

W_b

Figure 2.7.6 Rigid-Body Subsystem or the Spacecraft Dynamics Block

Figure (2.7.6) shows the rigid-body subsystem block in detail. It uses the Matlab function
“RB_Dynamics.m” which contains the non-linear rigid dynamics and integrates the input forces and
torques into body rates and accelerations. In addition to the jet and main engine force inputs, the
force on the vehicle due to the slosh mass motion, created by the slosh model, is also an input. The
outputs are: body rate, attitude quaternion, and spacecraft accelerations at three locations, the
navigation base, a sensitive location at the solar array, and at the center of the tank.

The flexibility model is shown in Figure (2.7.7). It uses the discrete (5 msec) state-space system:
“Flex Only Spacecraft with RCS and CMG (Z-Transf)” loaded from file: “flex_only_fem_z.m”,
which was created in Section 1.1. It contains only the 40 flex modes starting from mode #7. It is
excited by the same input forces and torques as the rigid model, but its outputs consist only of
flexibility components without rigid-body content. Its outputs consist of accelerations at node
numbers 2, 4, and 7, angular rates at nodes 2, 1, and 4, and rotations at node #2. Note that, the
acceleration and the rate measurements at node #4 (which is at the left solar array) are in solar array
and not in vehicle coordinates, and they are transformed to body coordinates by multiplying them
with a transformation matrix “Ctr”, so that they can be combined with the rigid-body components
from the rigid system.

79

% Inputs = 19
% 1 Force No 1 Applied at Node # 8 (lbf)
% 2 Force No 2 Applied at Node # 9 (lbf)
% 3 Force No 3 Applied at Node # 10 (lbf)
% 4 Force No 4 Applied at Node # 11 (lbf)
% 5 Force No 5 Applied at Node # 12 (lbf)
% 6 Force No 6 Applied at Node # 13 (lbf)
% 7 Force No 7 Applied at Node # 14 (lbf)
% 8 Force No 8 Applied at Node # 15 (lbf)
% 9 Force No 9 Applied at Node # 16 (lbf)
% 10 Force No 10 Applied at Node # 17 (lbf)
% 11 Force No 11 Applied at Node # 18 (lbf)
% 12 Force No 12 Applied at Node # 19 (lbf)

% 13 Force No 13 Applied at Node # 5 (lbf)

% 14 Force No 14 Applied at Node # 7 (lbf)
% 15 Force No 15 Applied at Node # 7 (lbf)
% 16 Force No 16 Applied at Node # 7 (lbf)

% 17 Torque No 1 Applied at Node # 6 (ft-lb)
% 18 Torque No 2 Applied at Node # 6 (ft-lb)
% 19 Torque No 3 Applied at Node # 6 (ft-lb)

% Outputs = 21
% 1 X-Accelerat. Sensed at Node # 2 (ft)
% 2 Y-Accelerat. Sensed at Node # 2 (ft)
% 3 Z-Accelerat. Sensed at Node # 2 (ft)

% 4 X-Accelerat. Sensed at Node # 4 (ft)
% 5 Y-Accelerat. Sensed at Node # 4 (ft)
% 6 Z-Accelerat. Sensed at Node # 4 (ft)

% 7 X-Accelerat. Sensed at Node # 7 (ft)
% 8 Y-Accelerat. Sensed at Node # 7 (ft)
% 9 Z-Accelerat. Sensed at Node # 7 (ft)

% 10 X-Rotation Sensed at Node # 2 (radian)
% 11 Y-Rotation Sensed at Node # 2 (radian)
% 12 Z-Rotation Sensed at Node # 2 (radian)

% 13 X-Rot. Rate Sensed at Node # 2 (radian)
% 14 Y-Rot. Rate Sensed at Node # 2 (radian)
% 15 Z-Rot. Rate Sensed at Node # 2 (radian)

% 16 X-Rot. Rate Sensed at Node # 1 (radian)
% 17 Y-Rot. Rate Sensed at Node # 1 (radian)
% 18 Z-Rot. Rate Sensed at Node # 1 (radian)

% 19 X-Rot. Rate Sensed at Node # 4 (radian)
% 20 Y-Rot. Rate Sensed at Node # 4 (radian)
% 21 Z-Rot. Rate Sensed at Node # 4 (radian)

5
acc #7

4
acc #4

3
acc #2

2
wb #4

1
wb #2

wb #4

wb

-K-

r2d1

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft_fem
z-domain

att

K*u

Ctr

K*u

Ctr

4
Ftank

3
Tcmg

2
Feng

1
Fjet

Figure 2.7.7 Structural Flexibility Subsystem

The zero-g non-linear pendulum model block is shown in Figure (2.7.8). The slosh mass is
initialized at some initial location relative to the tank and it is excited into motion by the vehicle
acceleration due to engine firing or the reaction jet thrusts. When its distance from the center
exceeds the pendulum length the mass applies forces (Ftank) at the tank center, closing the
mechanical feedback loop between vehicle acceleration and the input force at the tank in Figure
(2.7.5).

80

Zero-g Slosh
Pendulum Model

1
Fv

K Ts

z-1

integr
x0

delta

Xsdd

Xsd

Xsd

Xs

Wsl

Wsl

Wsl

MATLAB
Function

Slosh_0g
Fv

1/z

Delay

Acc

Acc CG

u2

 u2

u1
 u1

delta

 delta

Xsdd
 Xsdd

Xsd

 Xsd

Xs
 Xs

Fv
 Fv

1
Acc

x x-dot

Figure 2.7.8 Zero-gravity Non-Linear Slosh Dynamics Subsystem

The simulation results in Figure (2.7.9) show the spacecraft response to a 50 (deg) attitude
command in an arbitrary direction.

81

Figure 2.7.9 Spacecraft performs a 50 deg. attitude maneuver while maintaining a small translation of less than
one foot

82

83

84

Figure 2.7.9 Slosh mass activity and reaction forces applied on the spacecraft

85

During reboost the spacecraft fires the main engine to modify its
altitude or change orbit. The ACS points the spacecraft in a proper
orientation, the main engine ignites, and the RCS attempts to keep it
at constant attitude or a slowly varying attitude during the orbital
maneuver. We assume of course that the RCS can provide enough
torque to correct any attitude errors that may occur due to
misalignment of the thrust vector from the spacecraft CG. The
translation control system is obviously turned off during this phase
since we are constantly accelerating. The acceleration causes the
fuel to accumulate towards the engine at the bottom of the tank, and
any lateral disturbance causes sloshing which generate oscillatory
disturbances on the spacecraft. The fuel dynamic behavior
resembles that of a simple pendulum. When the desired orbit is
reached the main engine is turned off and the ACS switches to a
different mode of operation. In this section we will analyze a couple
of accelerating reboost models: a linear model that includes a linear
pendulum slosh model, and a non-linear model coupled with slosh
and structural flexibility. The simulation files for this analysis are in
folder: “C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG &
RCS\Reaction Control System Analysis\(i) Orbital Maneuvering-
Reboost Phase”. The file “start.m” initializes both simulation
models.

2.8.1 Linear Reboost Simulation Model

The linear Simulink model for the reboost phase uses the state-space system that was generated
using the Flixan “Flight Vehicle Modeling Program” in Section 1.2. Its title is “Flexible Agile
Spacecraft, Reboost Model (Z-Transf)” and it was saved in file “reboost_fvp_z.m”. In this case we
are not using the complex zero-g slosh model wrapped around the spacecraft dynamics as in the
previous zero-g case. This system is slightly different from the zero-g version used earlier because
in this accelerating case the slosh dynamics simplifies to a linear pendulum resonance that can be
included inside the vehicle state-space system. The pendulum frequency and other parameters are
defined in the vehicle input data file. Also, in this case, the vehicle acceleration was set to 0.5
(ft/sec2) in the x direction to capture the constant firing of the reboost engine. Otherwise, the
program will not accept a slosh resonance when the vehicle acceleration is zero. Note, that in the
vehicle data the slosh frequency is specified at 1g, (32.2 ft/sec2) because it is usually known at 1g.
The program adjusts the slosh frequency according to the total linear acceleration.

The simulation model for this linear case is in file “Sim-Lin-Reboost-fvp.mdl”, shown in Figure
(2.8.1). It uses the fuel optimal attitude control logic described earlier. There is no translation
control during reboost. The flex spacecraft system with slosh is in Figure (2.8.2). The simulation
results are shown in Figure (2.8.3). The spacecraft is commanded to maintain a constant zero
attitude during reboost. The engine thrust is constant throughout the simulation at 110 (lb). There is

86

a repetitive RCS jet firing for counteracting the torque generated due to engine and CG
misalignment. The RCS is holding the spacecraft attitude error below 0.5 (deg) defined by the dead-
band.

110

Reboost Engine
Force (lb)

rate

ater
Fjet

Phase-Plane
Jet-Select

Fjet

Feng

wb1

atti

Flex Spacecraft

(0 0 0)

Attitude
Command

= 0

-K-

Figure 2.8.1 Linear Reboost Simulation Model “Sim_Lin_Reboost_fvp.mdl”

Flex Spacecraft Dynamics
with Slosh (from FVP)

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

0 or 1
2

atti

1
wb1

wb2

wb1

wb
wb

time
time

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft
(Z-domain)

atti

atti

att

acc2

acc1

Term

Clock
2

Feng

1
Fjet

3

acc1

3

3

3nt

11

Figure 2.8.2 Spacecraft dynamic model with slosh created using the FVP

87

Figure 2.8.3 Simulation Results from the linear reboost system with slosh

88

2.8.2 Non-Linear Reboost Model

The non-linear Simulink model for the reboost phase is “Sim_NonLin-Reboost_fem.mdl”, shown in
Figure (2.8.4).

(0 0 0 1)

attitude
command=0

110

Reboost Engine
Force (lb)

Qf

Qc
qe

Quat Error rate

ater
Fjet

Phase-Plane
3-dof Jet Select

Frcs

Feng

wb #2

quat

Non-Linear Rigid
& Flex Combined

angular rate

quaternion attitude

Figure 2.8.4 Orbital Reboost Simulation Model “Sim_NonLin_Reboost_fem.mdl”

The green spacecraft subsystem block is the same as the one used in Section 2.7. It includes the
non-linear rigid-body function “RB_Dynamics.m”, in parallel with the flex-only state-space model
“flex_only_fem_z.m”. The simulation parameters are initialized from file “start.m” and the file
“pl.m” plots the simulation results, as soon as it ends. The spacecraft is commanded to maintain
zero attitude during reboost, i.e. quaternion command = (0, 0, 0, 1). In the spacecraft dynamics
block the non-linear slosh model closes the mechanical feedback loop by applying reaction forces at
the tank as a function of the slosh mass motion relative to tank. The mass is initialized at an off-
center position in the y direction to maximize the initial disturbance on the vehicle as it accelerates
in the x direction. The main engine force is set to a fixed value of 110 (lbf) which provides a 0.45
(ft/sec2) x-acceleration on the spacecraft. The simulation results are shown in Figure (2.8.5). The
initial slosh mass displacement from the center causes an initial transient in the spacecraft attitude.
The attitude error is significantly reduced as the mass converges (by means of a low damped
oscillation) towards the main engine at the bottom of the tank (in the –x direction). Eventually, the
vehicle maintains an average zero attitude within ±0.5 (deg) of error which is due to the dead-band.
The constant acceleration causes the non-linear spring of the slosh model to deflect approximately
1.5 (inch), see figure (2.6.1). The RCS jets are steadily firing attempting to balance the disturbance
torque generated by the engine thrust vector misalignment from the spacecraft CG. The plots also
show two rate-gyro and two accelerometer signals in different spacecraft locations where the
flexibility is different.

89

Figure 2.8.5 Non-Linear Reboost Simulation, Vehicle Response in Various Locations

90

Figure 2.8.5 Non-Linear Reboost Simulation, Slosh Variables

91

The Describing Function (DF) is a very powerful frequency domain method for evaluating the
stability margin of a non-linear control system, determining the existence of limit cycles, and also
for designing filters to attenuate resonances and to shape the control system’s frequency response in
order to improve stability margin and to prevent limit-cycles. Limit cycles are sustained oscillations
caused by non-linearities. We are not concerned with rigid-body limit-cycles because there is
always going to be some degree of rigid-body limit-cycling. We are more concerned with limit-
cycles which are caused due to structure flexibility excitation. It is very important, therefore, to
achieve sufficient gain and phase margin in flex mode resonances in order to prevent structural
limit-cycling because they are very undesirable. They use up a lot of fuel, corrupt measurements,
spacecraft performance, and they cause structural damage due to metal fatigue. In the classical
Describing Function methodology we separate a single-input-single-output (SISO) control systems
in two parts: (a) the linear G(s) part which is a function of frequency (ω), and (b) the non-linear
N(e) part which is a function of the error signal amplitude (e). Then we solve the feedback equation

1)()(=eNjG ω by using Nichols or Nyquist diagrams. Intersections of the G(jω) locus with the -
1/N(e) locus indicate the possibility of limit-cycles, but not every intersection defines a sustained
oscillation. There are convergent limit-cycles and divergent limit-cycles, and they usually alternate.
We are not concerned with divergent limit-cycles because they do not sustain an oscillation. We are
only concerned with the convergent limit-cycles. The convergent limit-cycle amplitude and
frequency can be obtained approximately from the loci intersections. The amplitude is obtained
from the 1/N(e) locus, and the frequency is obtained from the G(jω) locus which are both co-plotted
on a Nichols or a Nyquist plot.

It is not straightforward, however, how to apply the DF method in a typical RCS phase-plane
system and requires some simplifications and assumptions. The classical DF method is applicable
only to SISO systems, and it assumes that the DF of the non-linearity N(e) is a SISO, and a function
of only amplitude but not frequency. In our situation, however, the control system structure is a
little different and requires some assumptions to be made and block diagram manipulations in order
to shape it in a form where the DF method can be applied. To start with, our phase-plane controller
is unconventional because it has two inputs and one output. If we assume, however, that during
limit-cycling the inputs are approximately sinusoidal, the two inputs: rate and attitude errors are
related because the attitude error is the integral of the rate, hence, we can reduce the phase-plane
inputs to only one input, the body rate and integrate the rate to get attitude. Any sustained limit-
cycle generates a pattern in the phase-plane symmetric about the origin, producing, therefore, a
periodic output torque with zero average, as shown in Figure (2.8.6).

92

Figure 2.8.6 Sustained Limit-Cycle Trajectory in the Phase-Plane

The next problem to overcome is the fact that the output from the jet selection logic consists of
multiple jet forces (Fjet). Remember, we need to separate the G(s) part from the N(e) part and,
therefore, we must break the control loop at two points. One obvious point to separate the systems is
at the spacecraft rate output which is the input to the non-linearity. We must also break the loop at
the output of the non-linearity which is 12 jet forces. But it is not convenient to break the control
loop at the jet force for stability analysis because the DF method requires a breaking point at a
scalar, not a vector. One step closer to our goal is to transform the jet forces into torques (T) in the
non-linear control system output and break the loop at the torque output. This transformation creates
two separate (3x3) systems in a feedback loop, a non-linear part N(e) and a linear part G(s) that
connect to each other by means of roll, pitch, and yaw rates and roll, pitch, and yaw torques, as
shown in Figure (2.8.7). By cutting the loop at the torques it reduces the number of outputs to 3
instead of 12. The spacecraft plant inputs in this case must be torques (T). Now, each axis can be
analyzed separately using the DF method, and that is not just roll, pitch, and yaw, but other skewed
axes in between, because each direction uses a unique set of thrusters and excites the structure
differently. The spacecraft torque is related to the jet forces by the following equation

 jett FVT =

Where:

() ()
()tp

jjjjt

VinversepseudoV
ulvwherevvvV

_
:...21

=

×==

93

Where:
lj is the thruster (j) location relative to the spacecraft CG
uj is the thrust direction for a thruster (j)
vj is the torque on the spacecraft created by thruster (j)

But if the new plant input is torque, this torque it must be converted back into jet forces because the
original plant model requires forces and, therefore, we use the pseudo-inverse of (Vt), Vpinv, to
create pseudo forces to the plant input from torques, TVF pinvjet =' .

These forces will not be the same as the original forces Fjet, but they will produce the same amount
of torque on the spacecraft. The biggest difference is that F’jet does not excite the structure the same
way as the original Fjet, but this is acceptable if we assume that the structure is sufficiently stiff
between the jets, and that flexibility is mainly due to the appendages, such as, solar array, antennas,
etc. It is, therefore, be acceptable to drive the plant input with F’jet instead of the actual jet forces
Fjet, as long as both force excitations create the same torque. Figure (2.8.7) shows the two (3x3)
feedback interconnected systems: a non-linear (orange) block containing the controls and a linear
spacecraft dynamics (green) block, interacting by means of torques and body rates. The attitude
command is not shown because it does not affect stability.

Torques
Matrix

Pseudo-Inverse
Torques
Matrix

Non-Linear
Dynamics Linear Dynamics

K*u

Vti

K*u

Vt

rate Fjet

Phase-Plane
Jet-Select

Fjet wb

Flex
Spacecraft

Torques

Figure 2.8.7 Modified Non-Linear System used for Describing-Function Analysis

The next step is to separate the above (3x3) systems to individual SISOs and analyze the dynamic
motion and stability as if the spacecraft is excited and can move only in one direction at a time. The
assumption is that since the system is strongly diagonally dominant by the selection of the jets, if it
is stable in all individual SISO directions, it will also be globally stable when it is fully coupled. Let
us assume, for example, that we are analyzing the pitch axis. We must first create a pitch SISO plant
model by applying a scalar torque in pitch and measure the vehicle response only in pitch, as shown
in Figure (2.8.8). Similarly, we can create a roll plant by changing the rotation input vector to (1 0
0), or a yaw plant (0 0 1), or a plan in any skewed direction, ex. (0.2 -0.4 0.5), defined by the
rotational vector. We are ignoring, of course, the cross-coupling between axes in order to be able to
use the DF method, but if the jets are properly selected the cross-axial coupling is negligible. So we
can use the model in figure (2.8.8) to calculate the frequency responses of the plants G(s) in many
different directions. The input is a scalar torque which is converted into vector torque in a specific
direction and the output is a scalar body rate which is obtained from the spacecraft rate vector
resolved in the same direction. This plant model connects with the phase-plane non-linearity of
which we shall calculate its DF using Simulink.

94

Figure 2.8.8 Plant Model Resolved in a Single Direction (pitch shown above)

Calculating the Describing Function of the Phase-Plane Non-Linearity

We can also apply the same approach to decouple the non-linear control system to behave like a
SISO system in a specific rotational direction. Figure (2.8.9) shows the phase-plane non-linearity
converted into a SISO Simulink block. The input is a scalar body rate feedback coming from the
SISO vehicle model. It is converted to a vector (pitch rate in this example), and it is integrated to
obtain attitude. We are assuming that the signal is sinusoidal since we are examining the possibility
of limit-cycling. Attitude and rate errors drive the phase-plane (which is running slower, at 100
msec) and it generates the rate commands to the jet selection logic. The jet selection logic generates
the jet forces, which turn-off sequentially during the 100 msec control cycle, and generate the
control torque (T) after multiplying the acceleration matrix with the jet forces, jett FVT = . The
torque vector (T) is then resolved in a specific direction, pitch in this example, since the input rate
was also in pitch. The model in Figure (2.8.9) is used to calculate the DF of the phase-plane and jet-
selection logic together using Simulink. The direction of motion is defined by the rotation vector.
Notice, that because of the integrator the DF in this case N(e,ω), is a function of both, error
amplitude and frequency.

Phase-Plane
Logic

100 msec

Rate Change
Command

dw(3)

3-dof
Jet-Select

Logic

5 msec

5 msec

Scalar Rate from
Spacecraft Model

Output Torque
Generated in
Specified Direction

1
trq

(0 1 0)

rotat vector

rate * u 1
s

int K*u

Vt

V U

Unit
Vect

RT

RT3

RT
RT2

RT
RT1

wdc Fjet

Jet Select

Dot
Product

MATLAB
Function

3-dof-Rot
Phase-Plane

1
rate

Jet Forces

Unit Direction

Figure 2.8.9 Non-Linear Control System Resolved in a Single Direction (pitch)

95

The DF of the control logic is too complicated to be derived analytically and we will use a Matlab
program to calculate it from a Simulink model. The program that calculates the DF is
“DF_Calculate.m” and it is saved in folder “… \Examples\Flex Agile Spacecraft with SGCMG &
RCS\Reaction Control System Analysis\(i) Orbital Maneuvering-Reboost Phase\Describing
Function Analysis\DF Calculate”. It executes a Simulink model “DescFun_Sim.Mdl” shown in
Figure (2.8.10). The non-linearity in the orange block is the SISO control logic at a single axis,
shown in figure (2.8.9).

DescFun_Sim.Mdl
Calculates the Describing Function of a Non-Linearity

out2

out1

out

Triger at Stop

Stop Simulat
at the end of

one cycle (2*pi)

Sin (om*t)

real

imag

Save

Real Part od DF

Prod1

Prod
rate trq

N(e)

K Ts

z-1
Int1

K Ts

z-1
Int

Imag Part of DF

E

E

E

E

Cos (om*t)

-C-
2/T

-1

-1
-sin(om*t)

Figure 2.8.10 Simulink Model that Computes the Describing Function of the Non-Linearity N(e)

The DF program runs this simulation multiple times inside two nested loops, for a range of
amplitudes and a range of frequencies. It calculates the Describing Function N(e,ω) as a function of
input amplitude and input frequency and plots it in a 3-dimensional plot, as shown in Figure
(2.8.11). The DF represents the gain of the non-linearity for a sinusoidal input at a specific
amplitude and frequency, spacecraft torque over body rate in (ft-lb/rad/sec). The DF amplitude plots
show that N(e,ω) is strongly dependent on the input amplitude (e), decreasing with amplitude. It
decreases also with frequency but much less. Overall, the magnitude of the DF in yaw is about 10
(dB) higher than roll because it needs more torque in yaw having larger moment of inertia in yaw.
The program also plots the (-1/N) magnitude versus phase that will be co-plotted with the Nichols
of G(s) for stability analysis and limit cycles determination, see Figure (2.8.12). The (-1/N) loci are
generated at specific frequencies of interest, starting at a low frequency 0.2 (rad/sec), the slosh
frequency 0.72 (rad/sec), the roll appendage frequency 3.19 (rad/sec), and another appendage mode
5.84 (rad/sec) predominant in yaw.

96

Figure 2.8.11 Describing Function of the Control System in Roll and Yaw as a Function of Spacecraft Input Rate
(rad) and Input Frequency (rad/sec)

97

Figure 2.8.12 Inverse DF (-1/N) Loci Magnitude versus Phase for Stability Analysis

98

Plant Models

Just like in the time-domain simulation we have also created two different plant models for
frequency domain stability analysis. The reason is to compare the efficiency of the two approaches
in modeling the spacecraft dynamics, and to make sure that there are no modeling errors. The files
for this frequency domain analysis are in folder “… \Examples\Flex Agile Spacecraft with SGCMG
& RCS\Reaction Control System Analysis\ (i) Orbital Maneuvering-Reboost Phase\Describing
Function Analysis”. The first plant model uses the spacecraft state-space system for the reboost
phase “reboost_fvp_s.m”, title “Flexible Agile Spacecraft, Reboost Model” that was created by the
flight vehicle modeling program in Section 1.2. This model is very similar but not identical to the
zero-g model that was used earlier. It includes the slosh mode of the fuel tank, and also has a non-
zero axial acceleration Ax in the vehicle data that defines the slosh frequency. It is implemented as
a continuous state-space model inside the Simulink model “Open-Loop-FVP.mdl”, shown in Figure
(2.8.4). It is forced to behave like a SISO system by directing the torque excitation in a specific
rotational direction and also by resolving the motion in the same direction, as already discussed.

We also have a second spacecraft model that was created differently but it was also shaped in a
similar structure, shown in Figure (2.8.13). This green spacecraft block consists of three separate
subsystems which are combined together inside the Simulink model “Open_Loop_FEM.mdl”, see
Figure (2.8.14). The rigid-body dynamics is implemented inside the Matlab function
“RB_Dynamics.m”. The flex dynamics, consisting only of flex modes, is loaded as a continuous
state-space system from file “flex_only_fem_s.m”, which was created in Section 2.1. The third
subsystem inside the Simulink model is a linearized version of the slosh pendulum model. This is
implemented inside the Matlab function “Slosh_Lin.m”. It creates forces at the tank as a function of
vehicle acceleration, similar to the non-linear slosh model discussed earlier. The yellow “Unit
Vector” block guarantees that the rotational direction entered is converted into a unit vector.

Note, Roll, Pitch, Yaw plus
other skew directions can
be analyzed separately

Each direction corresponds to
a unique set of thrusters

Torque from Jet Select
in Specific Direction
(Scalar)

Body Rate
Resolved in the
Excitation Direction

1
rate

(1 0 0)

rotat vector

V U

Unit
Vect

Torque * u

Tqu wb #2

Non-Linear Rigid
Linear Slosh

& Flex Combined

Dot
Product

1
Torq

Figure 2.8.13 Simulink Model “Open_Loop_FEM.mdl” for Frequency Domain Analysis using the DF

99

Body Rates at
Nodes

#2 and #4

Main Engine
Forcs

RCS Jet
Forces

(lb)

Acceleration at
the Tank Center

1
wb #2

K*u

vti * Th

Tdist

Frcs

Feng

Tdist

Ftank

quat

Wb

acc #2

acc #4

acc #7

Rigid
Dynamics

AccFv

Linear
Pendulum Model

Fjet

Feng

Tcmg

Ftank

wb #2

wb #4

acc #2

acc #4

acc #7

Flexibil ity Only

Feng

1
Tqu

nt

Figure 2.8.14 Spacecraft Dynamics Block inside “Open_Loop_FEM.mdl”

The file “run_freq.m” loads the system parameters and calculates frequency responses in roll and
yaw from the two spacecraft models. The results from the two systems are co-plotted in Figure
(2.8.15) and they are identical in all directions.

100

Figure 2.8.15 Frequency Responses from the Two Systems are Identical in all Directions

101

Stability Analysis Using the DF

The sampling frequency of the control loop is at 10 Hz and, therefore, in the DF analysis the plant
should be sampled at 10 Hz. In the DF analysis we co-plot the Nichols of the G(s) with the -1/N(e)
locus and hope that there are no intersections. The DF in this case is frequency dependent and it
would require a 3-d illustration but we can take advantage that the -1/N(e) does not vary much with
frequency. We can plot only a few of the loci, -1/N(e,ω1), -1/N(e,ω2), -1/N(e,ω3), where ωi
correspond to some of the big resonances, that stick out, such as slosh and a couple of appendage
modes below 5 Hz and overlay them with the G(s) of the linear plant. This analysis must be
repeated for at least 3 directions separately, roll, pitch, yaw, plus a few additional skewed
directions, but we are only showing a couple cases. The file “run_freq” discretizes the two Simulink
models “Open_Loop_FEM.mdl” and “Open_Loop_FVP.mdl” and calculates the Nichols plots
shown in Figure (2.8.15) for roll and yaw. The Describing Function overlay was done manually
from the plots in Figure (2.8.12). There is a slight difference in the size of the slosh resonance
between the models, appearing in the roll direction. The results clearly indicate that this system is
not threatened by limit cycles in neither direction. In fact, all resonances are well behaved in phase,
exhibiting min-phase type behavior.

102

103

This section provides a detailed tutorial on designing spacecraft Attitude Control Systems using
Single-Gimbal Control Moment Gyro devices. We will use the same spacecraft model that was
described in the previous section using RCS and design an alternate ACS that uses SG-CMGs. The
ACS consists of a cluster of four SG-CMGs mounted together on a solid structure near the center of
the spacecraft. They are controlled by a non-linear Max Energy control logic that attempts to use the
maximum control torque and momentum capability of the CMG devices to improve (in comparison
with linear controls) the spacecraft ability to maneuver. The control law also uses a steering logic
that prevents CMG singularities. Singularities or “gimbal locks” occur when the SGCMG cluster
cannot provide torque in a required direction. In the following sections we will discuss the SGCMG
dynamics, the equations of motion of a spacecraft with SG-CMGs, design the control and steering
laws, and describe the simulation models. We start with simple rigid-body models that exclude the
CMG gimbal dynamics and the flexibility of the structure, and we gradually upgrade the models
with more details. We finally analyze a low cost configuration that uses a combination of one
reaction wheel and two CMGs. The flex spacecraft models are created using two separate Flixan
modeling programs for comparison.

104

A single gimbal control moment gyroscope (SGCMG) is shown in Figure 3.1. It consists of a
spinning rotor that is mounted on gimbal perpendicular to the rotor axis. The rotor spin rate is
maintained at a constant speed by a small motor that produces a constant angular momentum (hcmg).
The momentum direction can be rotated by a stronger motor which is mounted at the gimbal. The
gimbal motor controls the gimbaling rate, and hence the output torque. By commanding the gimbal
to rotate (by means of a servo system that controls the gimbal motor), high precession torques are
generated by changing the orientation of the angular momentum vector. The reaction torque on the
spacecraft (T) is equal and opposite to the rate of change in momentum vector h , which is
orthogonal to the momentum vector and the gimbaling vector according to the right hand rule. At
any instant it is a function of the gimbal position. In fact the torque magnitude is equal to the CMG
momentum multiplied by the gimbal rate. A CMG generates much greater torques than a reaction
wheel and for this reason it is very attractive in high torque and fast maneuvering spacecraft
applications. Notice also, that the SG-CMGs generate the high precession torques without requiring
high power.

Figure 3.1 Single-Gimbal Control Moment Gyro

Another attractive feature of CMGs compared with reaction wheels is that the rotor in a CMG spins
at a constant rate which places the vibrations at known frequencies while in a RW, the rotor speed
changes, thus, exciting the spacecraft structure in multiple frequencies which may not be desirable
in precision applications. CMGs, however, are complex systems, expensive, and require complex
controls with singularity avoidance algorithms. Figure 3.2 shows a picture of a SG-CMG. It consists
of a rotor that spins at a constant high rate about an axis that can be rotated. There is also a torque
motor assembly that rotates the rotor about a gimbal axis that is fixed relative to the spacecraft, and
a position sensor that measures the gimbal rotation relative to the spacecraft.

105

Figure 3.2 Single Gimbal Control Moment Gyro

106

The momentum of one CMG about the Gimbal, Output, and Spin axes can be calculated as a
function of the spinning rotor momentum and the spacecraft rotation rate in CMG axes.

()
()
















++
−=

















δφδθ
δθδφ

δ

sincos
sincos

0






s

o

ig

s

o

g

Jh
J

J

h
h
h

 (3.1)

Figure 2.3 defines the orientation of a Single Gimbal CMG vectors with respect to the spacecraft
axes. The rate of change of momentum which is the moment generated by a SGCMG in the Gimbal,
Output, and Spin axes respectively as a result of gimbaling and base motion are:

() ()()
() ()() 
















−−+−+++Ω
+−++−−−=

















δθδφδδδθδδφδφδθ
δφδθδδδθδδθδδφδφ

sincossincossincos
sincossincossincos 0





ogiiis

gsiiiio

gi

S

O

G

JJJ
JJhJ

T

M
M
M

 (3.2)

The reaction torque on the spacecraft is minus [MG, MO, MS]

Where:
Jg is the CMG inertia about its gimbal axis
Jo is the CMG inertia about its output axis
Js is the CMG inertia about its spin axis
Tgi is the torque applied by the torque motor at the gimbal

iδ is the gimbal inertial angular acceleration including spacecraft
δ is the CMG gimbal rotation about the m axis with respect to spacecraft r axis
h0 is the constant CMG momentum about its spin axis (IsΩ)
Ω is the rotor spin acceleration
θ is the vehicle rate in the CMG r axis
φ is the vehicle rate in the CMG q axis

107

Figure 3.3 Orientation of a CMG in Spacecraft Coordinates

The rotation rates of the CMG axes can be related to the spacecraft body rate. If ω is the spacecraft
body rate vector (ωX , ωY , ωZ), the following relationships resolve the spacecraft rates about the
CMG axes: (r, q, m). φθ  and are the spacecraft rates resolved about the CMG reference and quad
axes. The gimbal rate iδ in addition to the gimbal rate relative to spacecraftδ it includes also the
spacecraft rate about the CMG gimbal.

βωγβωγβωδδ

βωγβωγβωφ

γωγωθ

coscossinsinsin
sincoscossincos

sincos

ZYXi

ZYX

YX

+−+=

++−=

+=







 (3.3)

108

The following projection matrix (P) transforms the CMG torques from CMG axis to spacecraft axis.
































++−−
−−−

=
















S

O

G

Z

Y

X

M
M
M

M
M
M

βδβδβ
γβδγδγβδγδγβ
γβδγδγβδγδγβ

sinsinsincoscos
coscossinsincoscoscoscossinsincossin
sincossincoscossincoscoscossinsinsin

When CMGs are used to steer spacecraft, at least three CMGs are needed to provide 3 axes control.
If we consider an array of SGCMG mounted on the surfaces of a pyramid with their gimbal axes
directions (mi) perpendicular to the corresponding surface and the momentum direction (hi) always
aligned with the surface of the pyramid as the gimbal σi rotates. The output torque from each CMG
is equal to the rate of change of angular momentum which is in the (mi x hi) direction and
proportional to the gimbal rate iδ . From the pyramid surfaces orientations we can calculate some
important matrices that will be used in the equations of motion.

Figure 3.4 Array of five CMGs in a Pyramid Configuration

109

Let us consider the CMG pyramid arrangement presented in this example shown in Figure 3.5. The
spacecraft has four SGCMGs which are mounted to the four faces of a four sided pyramid. All
CMGs have the same angular momentum, hcmg=1200 (ft-lb-sec) about their spin axis. Their CMG
momentum vectors (hi) can be rotated about the gimbal vectors (δi), which are perpendicular to each
surface, and they are constrained to lay parallel to the surface of the pyramid. The pyramid angle β
is 68 (deg), and the γi angles of the four surfaces, according to figure (3.3), are: (90º, 180º, 270º, and
0º). The columns of the following (3x4) matrix b

gM contains the four gimbal direction unit vectors
mi. It is a gimbal to body transformation matrix.

[]
















−

−
=
















−

−
=
















−==

375.0375.0375.0375.0
927.00927.00
0927.00927.0

coscoscoscos
sin0sin0
0sin0sin

cos
cossin

sinsin
:4321

ββββ
ββ

ββ

β
γβ

γβ

M

mwheremmmmM

i

ii

ii

i

 (3.5)

The (3x4) matrix [R] represents the momentum reference directions. That is, the initial directions ri
of the momentum vectors hcmg(i). More precisely, are the momentum directions when the gimbal
angles (δi) are at zero. The initial gimbal angles δ0i=0 to provide zero momentum bias.

[]















−

−
=
















==

0000
0101
1010

;
0

sin
cos

:4321 RrwhererrrrR i

i

i γ
γ

 (3.6)

We must also define a (3x4) matrix Q, containing column vectors of the cross product direction unit
vectors (qi).

[] ()
















=

×==

0.9270.9270.9270.927
0.37500.375-0

00.37500.375-

;;
4321

Q

rmqqqqqQ iii

 (3.7)

Notice, that the pyramid structure is only used for visualization. The CMGs do not have to be
physically mounted on the four surfaces of an actual pyramid, as in Figure 3.5, but they can be
translated anywhere on the spacecraft as long as their gimbal axes (mi) and their reference
momentum vectors (ri) are parallel to the directions shown in the pyramid. See, for example, the
CMG cluster in Figure 3.6. The CMGs are typically mounted on a structure that it is mechanically
isolated from the spacecraft by means of vibration isolation struts, as shown in Figure 3.6, that
attenuate vibrations from the CMGs.

110

Figure 3.5 Array of four CMGs in a Pyramid Configuration

Figure 3.6 A Cluster of four Single Gimbal CMGs mounted on a pyramid structure which is isolated
from the spacecraft by means of disturbance isolation struts

111

The combined spacecraft plus CMG rate of change of momentum is related to the external torques
as follows:

extsyssys THH =×+ ω
 (3.8)

Where:
Hsys is the total system momentum,
Text is the external torque vector and
ω is the spacecraft angular rate.

By introducing the internal CMG torque we separate the spacecraft and CMG rate of change of
momentum equations and solve for the spacecraft rate ω as a function of internal plus external
torques

cmgcmgcmg

extcmgscsc

THH

TTJJ

−=×+

++×−=

ω

ωωω




 (3.11)

The total system momentum is constant and it consists of spacecraft plus CMG momentum.

cmgscsys HJH += ω

The internal CMG torque (Tcmg) applied to the spacecraft is equal and opposite to the torque applied
to the CMG array. It consists of the control torque (Tcon) intended to control the spacecraft which is
also the rate of change in the CMG momentum, and the gyroscopic torque cmgH×ω . The control
torque (Tcon) is a non-linear function of the gimbal angles and gimbal rates.

()[] cmgcon HAT  −=−= δδ (3.12)

The CMG array angular momentum vector in body axes (Hcmg) is also related to the individual
CMG momentum defined in CMG axes, (Gimbal, Output, and Spin axes), as follows

iS

O

GN

i
icmg

h
h
h

PH
cmg
















= ∑

=1 (2.13)

Where: matrix Pi transforms the CMG (i) momentum from (Gimbal, Output, Spin) axes to
spacecraft axes. Similarly, the CMG control torques are transformed from CMG axes to spacecraft
axes, and they are combined to form the total CMG torque.

112

 iS

O

GN

i
icmg

M
M
M

PT
cmg
















= ∑

=1

 (3.14)
where:

() ()()
() ()() 
















−−+−+++Ω
+−++−−−=

















δθδφδδδθδδφδφδθ
δφδθδδδθδδθδδφδφ

sincossincossincos
sincossincossincos 0





ogiiis

gsiiiio

gi

S

O

G

JJJ
JJhJ

T

M
M
M
















++−−
−−−

=
βδβδβ

γβδγδγβδγδγβ
γβδγδγβδγδγβ

sinsinsincoscos
coscossinsincoscoscoscossinsincossin
sincossincoscossincoscoscossinsinsin

iP

By combining equations (3.11) and (3.12) we can rewrite equation (3.11) in terms of only the
control torque instead of the total CMG torque (Tcmg) as shown in (3.15). Tcon is the steering torque
designed to shape the spacecraft rate as commanded by the Attitude Control System. Equations
(3.15) can be used instead of (3.11) in simple 6-dof simulations that do not require gimbal torque
dynamics and flexibility.

()
concmg

extconsyssc

TH

TTHJ

−=

+=×+


 ωω

 (3.15)

If we consider only the CMG momentum about its spin axes and ignore the momentum about the
gimbal and output axes (which are small), the combined CMG angular momentum vector is a
function of the individual CMG momentums hcmg(i) and also a function of their spin axis
orientations, as shown in equation (3.16). For a more accurate implementation that includes also the
effects due to the gimbal torques we may calculate the CMG momentum (Hcmg) by integrating
equation (3.11) using Tcmg from (3.14).

())(
1

sincos icmg

N

i
iiiicmg hqrH

cmg

∑
=

+= δδ (3.16)

The matrix A that relates the gimbal rates to rate of change in CMG momentum is a (3 x Ncmg)
matrix consisting of (Ncmg) column vectors ai . Its elements vary with the gimbal angles (δi).

() ()
())(

4321

sincos
:

icmgiiiii hrqa
whereaaaaA

δδ
δ

−=
=

 (3.17)

113

δi is the gimbal angle for CMG (i)
ri is a unit vector of the initial momentum direction for CMG (i)
mi is a unit vector of the gimbal direction for CMG (i)
qi is the orthogonal direction (mi x ri) for CMG (i)
Tcon is the control torque applied to the gimbal by the motor
Tgi is the gyroscopic torque cmgH×− ω resolved in gimbal (i) direction

b
gM is the (3 x 4) transformation matrix from gimbal axis to body axis

hcmg(i) is the momentum of CMG (i) about its spin axis, which is constant.

The CMG gimbal rates are controlled by a servo system that generates gimbal torques. The servo
torque at the gimbal of each CMG is attempting to counteract the gyroscopic disturbance torque
created by the spacecraft rate. φθ  and are the spacecraft rates resolved about the CMG reference
and quad axes, as defined in equation (3.3). The CMG gimbal inertial acceleration is obtained by
integrating the gimbal moment equation (3.18) ignoring friction. Tgi is the motor torque applied at
each gimbal (i). Even though the CMG moment of inertia about the gimbal Jg is relatively small, the

cmgh×ω gyroscopic moment caused by the CMG momentum coupling with spacecraft rate is a big
torque that requires a powerful gimbal servo-motor in order to be able to control the gimbal rate.

() giicmgig ThJ =−+ δφδθδ cossin)(
 (3.18)

The attitude quaternion is updated by integrating the quaternion rate which is a function of the body
rate and the current quaternion, as shown in equation (2.19)

QQ



















−−−
−

−
−

=

0
0

0
0

5.0

321

312

213

123

ωωω
ωωω
ωωω
ωωω


 (3.19)

The pseudo-inverse of matrix A is used to calculate the SGCMG steering law

()()
estimsyscomsccom HJA ×+−= + ωωδδ )((3.20)

After substituting in equation (2.12) it makes the vehicle rate to be equal to the commanded rate.

comωω  =

114

Linearized Equations of Spacecraft with SGCMGs
The rate of change in CMG momentum is shown in equation (3.21), where: (ωX0, ωY0, ωZ0) is the
nominal (steady) body rate and (ωx, ωy, ωz) is the variation in vehicle rate. Similarly, (ΗX0,
ΗY0, ΗZ0) is the nominal (steady) CMG array momentum and (hx, hy, hz) is the variation in CMG
momentum. Tcmg is the torque applied to the vehicle generated by the CMG array.

cmg

Z

Y

X

z

y

x

z

y

x

Z

Y

X

z

y

x

T
H
H
H

h
h
h

h
h
h

−















×
















−
















×
















−=

















0

0

0

0

0

0

ω
ω
ω

ω
ω
ω







 (3.21)

The CMG torque as a function of the spacecraft rates, and the gimbal angles and rates is:

()()
()()

iiog

igsiicmg

giN

i
icmg

JJ
JJh

T
PT

cmg

















−−
+−+−= ∑

= δδθδφ
δδφδθδ





0000

0000)(
1 sincos

sincos
 (3.22)

The CMG gimbal accelerations in the linearized model are obtained by linearizing equation (2.18)

()φδθδδδφδδθδ 
000000)(cossinsincos −++−= icmggiig hTJ (3.23)

where:
()000 ,, δφθ  are the nominal values of vehicle and gimbal rates
()δφθ  ,, are the variations in vehicle and gimbal rates

SGCMG References:

1. A Practical Approach to Modeling Single Gimbal CMGs in Agile Spacecraft, Chris J. Heiberg,
AIAA GN&C Conference, August 2000

2. Precision Spacecraft Pointing Using Single Gimbal CMGs, Chris Heiberg, Dave Bailey, Bong Wie,
Journal of Guidance, Control, and Dynamics, Vol. 23, No. 1, January–February 2000

3. Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros, Bong Wie,
Chris Heiberg, Dave Bailey, AIAA GN&C Conference, August 2000, AIAA-2000-4453

4. Feedback Control Law for Variable Speed Control Moment Gyros, Hanspeter Schaub, Srinivas R.
Vadali, John L. Junkins, Journal of the Astronautical Sciences, Vol. 46, No. 3, July–Sept., 1998

5. Rapid Multi-Targeting Acquisition and Pointing Control of Agile Spacecraft, Bong Wie, Dave
Bailey, Chris Heiberg, AIAA GN&C Conference, August 2000, AIAA-2000-4546

6. Precision Pointing Control of Agile Spacecraft using Single Gimbal CMG, Chris Heiberg, Dave
Bailey, Bong Wie, AIAA-97-3757

7. Bong Wie, et. al., “Singularity Robust Steering Logic for Single-Gimbal Control Moment Gyro,” J.
of GCD, vol. 23, No. 5, Sep-Oct, 2001.

8. Bong Wie, Space Vehicle Dynamics and Control, AIAA, 2nd edition, 2010.

115

The momentum exchange devices, such as Control Moment Gyros or Reaction Wheels have limits
in torque and momentum capability. Linear control laws are too slow for agile spacecraft
maneuvering because they do not utilize the max torque and momentum capability of the device.
For fast maneuvering between targets the spacecraft control law should be able to utilize the max
torque and momentum capability of the momentum exchange device.
Let us consider the rectangular torque profile for a bang-bang, time optimal maneuver shown in
Figure 2.3.1(a). A desired slew maneuver usually requires two torque pulses, one to initiate the
maneuver and the other to stop the maneuver once the desired angle has been achieved. Using the
figure, the maneuver time ts, the maximum torque magnitude Tr, and the maneuver angle θ, are
related as follows:

θ
t
4IθIT 2

s
r ==  (3.3.1)

Where:

m
s

θ
t
2θ  = (3.3.2)

is the acceleration expressed in terms of the maximum rate, mθ , and in terms of the spacecraft
moment of inertia I, about the maneuvering axis. In a typical bang-bang maneuver we have two
types of situations: (a) when you apply max torque during half of the maneuvering time and then
reverse and apply negative torque during the second half of the maneuver, without the spacecraft
rate reaching the max momentum capability of the device, and (b) when you apply max torque for a
period t1 until the momentum device reaches near saturation, followed by a zero torque coasting
period (t1 to t2), and at t2 the torque is reversed to max negative value and applied for the same
amount of time (t2 to t3) until the spacecraft reaches target position.

116

Figure 2.3.1 Bang-Bang Maneuvers

The maximum energy control is a phase-plane control law that attempts to perform a similar type of
bang-bang fast maneuvering in three directions. It operates in two distinct modes to achieve good
performance; the phase-plane mode, and the PID mode, and it uses a switching logic to switch
between the two modes. The phase-plane mode provides the fast maneuvering feature, while at
steady-state the PID provides good tracking capability.

During maneuvering the logic calculates the quaternion error between current and the desired target
positions and performs the maneuver in the quaternion error eigenaxis. The phase-plane
maneuvering logic uses a three-degree-of-freedom switching line to converge the attitude versus
rate error trajectory to zero (target position). The switching line is calculated based on the maximum
acceleration capability of the CMG. In the beginning of the maneuver the spacecraft uses maximum
CMG torque in the error direction and it reverses the torque when the trajectory reaches the
switching line. Then it follows the switching trajectory to zero. There are limits, of course, that
prevent the spacecraft rate from exceeding max rate and acceleration limits. When the spacecraft
approaches near the target position the logic switches to PID mode which provides good tracking by
further minimizing the attitude error. Maintaining a constant eigenaxis creates a very stable
maneuver. The attitude errors are maintained proportional in all directions and they are all brought
to zero in unison.

117

Maneuvering Phase-Plane Logic

For a single axis rotation the control torque switching line in the rate versus attitude error phase-
plane is as follows:

0xwhenxa2x

0xwhenxa2x

lim

lim

>−=

<−=





where: alim is the acceleration limit and it is defined by the ratio of maximum torque over inertia in
that direction:

I
Ta max

lim =

For a three axes rotation, the phase plane switching line becomes

2
3

2
3

2
2

2
2

2
1

2
1

A
x

A
x

A
x

2
i

i
x2x

++
=

 (3.3.3)

Where: A1, A2, and A3 are the acceleration limits in spacecraft body directions.

118

Attitude Control System Description

The maximum energy control system block diagram is shown in Figure 3.3.2. It consists of an inner
rate control loop (D) and an outer (PI) attitude control loop. The CMG array steering logic is also
included in the rate control loop. The inner rate control loop must be designed first. It receives a
body rate command from the attitude controller and regulates the vehicle rate by issuing
acceleration commands to the RW steering logic. If the bandwidth of the rate loop is sufficiently
high to keep up with the body rate command then we can assume that (cωω ≈) and continue with
the outer loop.

Inner Rate Loop

The rate control loop regulates the spacecraft rate. It receives (roll, pitch, and yaw) rate error
commands which become acceleration commands that drive the CMG steering law. The steering
law generates the CMG gimbal rate commands (comδ). An acceleration limiter (AL) is included in
the rate loop that prevents the CMG torque commands from exceeding their maximum torque
capability. The steering law is given in equation (3.3.4). It uses a pseudo-inverse of matrix A which
is defined in equation 3.15 and it is a function of the gimbal angles δi

()[] com
TT

com

com
comcomcom

errrcom

JEAAA

ALALif

k

ωλδ

ω
ωωω

ωω








+−=

=>

=

−1

, (3.3.4)

Depending on the orientation of the gimbal angles δi the pseudo-inverse matrix may become
singular. To avoid the singularity, the pseudo-inverse matrix is modified using a singularity
avoidance logic (λE), where:

)det(
1)

2
sin(01.0)

2
cos(01.0

)
2

sin(01.01)sin(01.0

)
2

cos(01.0)sin(01.01

TAA
kand

wtwt

wtwt

wtwt

E =























−+

−

+

= λ

ππ

π

π

Where: w and k are properly selected. The singularity avoidance logic checks the condition of the A
matrix and introduces a small perturbation to prevent a gimbal lock. When the matrix A is moving
towards a singularity the perturbation rotates around it. The closer to a singularity the bigger the
perturbation gets.

119

Attitude Control Loop

The input to the attitude control loop is the attitude error, or more precisely, quaternion error. The
attitude error signal goes to the PI controller that operates in two modes based on the switch ky
which is either set to zero or one. During maneuvering (when ky=1) the controller becomes a simple
proportional gain Kp. Otherwise, during PID mode, (that is when ky=0) the block becomes a PI

transfer function
s

bsK P
+ that provides better tracking and disturbance attenuation at low

frequencies. The switch setting is controlled by a signal that is a combination of rate plus attitude
error. In the beginning of the maneuver when this error signal is large ky is set to 1. When the error
signal drops below a certain value ky is set to zero and the integrator is turned on.

Figure 3.3.2 Block Diagram of Maximum Energy Control System

The energy manager block shapes the velocity command as a function of the attitude error in order
to bring the phase-plane trajectory directly to zero without chattering, according to the parabolic
switching line in equation (3.3.3). This maintains a proportional attitude error reduction in all
directions throughout the maneuver. The velocity limiter in series with the energy limiter bounds
the vehicle rate during the acceleration phase of the maneuver. It also bounds the CMG momentum
during maneuvering preventing it from reaching saturation levels.

120

In this section we are presenting simulations and analysis of the agile spacecraft controlled by an
array of four SGCMG. We start with a simple rigid-body simulation model that uses equations
(2.13) and is assuming that the gimbal rates are equal to the gimbal rate commands coming from the
steering logic. The CMG momentum is calculated from equation (3.14) as a function of the gimbal
angles. The gimbal rate commands are calculated by the steering logic which was described in
equation 3.3.4. The control torque on the spacecraft is ()[]δδ AT con −= . This model is used for
initial evaluation of the control law before advancing into more complex models. The second
simulation model is still rigid-body uses equations (3.11) and (3.12). The CMG torque in addition to
the control torque Tcon it contains also an estimate of the gyroscopic torques. The CMG momentum
is calculated by integrating the second part of equation (3.11). The CMG torques are calculated
from equations (3.2), (3.4) and (3.10). The gimbal rates are calculated by integrating equation
(3.16). The gimbal torque Tgi is provided by a gimbal torque motor servo system. The quaternion
output is obtained by integrating equation (3.17). The third simulation model is similar to the
second one but it was adjusted to include structural bending.

3.4.1 Max-Energy/ 4 CMG Simple Rigid Body Simulation

Figure 3.4.1.1 shows the Max-Energy Attitude Control System simple simulation model that uses
four Single-Gimbal CMGs. It is implemented in a Simulink file “MaxEn-NonLin_4SGCMG.mdl”
which is located in folder “…\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG
Control\(a) Simple RigBody 4SGCMG ACS”. It consists of three major blocks: the Attitude Control
System, the inner rate loop and Steering logic block, and the spacecraft/ CMG dynamics. The ACS
receives a quaternion command which is compared with the spacecraft quaternion attitude to
generate the error signal which drives the Steering logic and rotates the spacecraft.

delta

deldot

wb

quatern

Spacecraft
Dynamics

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator wb

qc

qf

we

Attitude
Control
System

gimbals

rate
error

attitude quaternion

body rates

Figure 3.4.1.1 Max-Energy ACS Simulation Model “MaxEn_NonLin_4SGCMG.mdl”

121

The spacecraft and CMG dynamics (green block) is implemented in Matlab function
“CMG_Dynamics.m”. The inputs are CMG gimbal angles and gimbal rates in (radian). The outputs
are body rates, and attitude quaternion.

2
quatern

1
wb

wb

wb

theta

theta

sin

sin

acos

acos(q4)

Tcmg

Tcmg

MATLAB
Function

Spacecraft + CMG
Dynamics

Product

1/s

Int7

Hsys

Hsys

Hcmg

Hcmg

External
Torque

em
em

em

-K-

2*r2d

 wb

 rot angle
(deg)

exis

 exis2
deldot

1
delta

gimbal angles

xdot
h

gimbal rates
h_cmg

function dot= CMG_Dynamics(delta,deldot,x,Td) % s/c Dynamics with CMG
global J Jinv m ref quad hcmg d2r r2d wcmg zeta

% State Variables (x)
% x(1-3) = Body rates (w) (rad/sec)
% x(4-7) = Quaternion
% Inputs:
% Td(3) = Disturbance Torque (ft-lb)
% delta(4) = Gimbal Deflections (rad)
% deldot(4)= Gimbal Rates (rad/sec)

dot= zeros(16,1);
w= x(1:3);
h= [0 0 0]';

for i=1:4
 A(:,i)= (-sin(delta(i))*ref(:,i) + cos(delta(i))*quad(:,i))*hcmg(i);
 h = h + (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
 harray(:,i)= (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
end

hs = J*w + h; % System Momentum
Tcmg = -A*deldot -cross(w,h); % CMG Control Torque
dot(1:3)= Jinv*(Tcmg - cross(w,J*w) +Td); % Vehicle acceleration
dot(4:7)= 0.5*[0 w(3) -w(2) w(1); % Quaternion Update
 -w(3) 0 w(1) w(2);
 w(2) -w(1) 0 w(3);
 -w(1) -w(2) -w(3) 0]*x(4:7);
dot(8:10) = h; % CMG Momentum in body
dot(11:13)= hs; % System Momentum
dot(14:16)= Tcmg; % CMG Torques

122

The inner rate control loop and Steering Logic (middle block in Figure (3.4.1.2) is implemented in
Matlab function “Steering.m”. It receives the rate error command from ACS and calculates the
gimbal rate command comδ .

Rate Controller, Steering
and CMG Dynamics

Gimbal Rate
Commands

(rad/sec)

Rate Error
2

deldot

1
delta

wdot-com

time

time

det
det

MATLAB
Function
Steering

em

emu

Clock

deldc

deldot

delta

CMG Dynamics

 wb

 det

 Torq

1
we

xdot
deldot deldot_com

delta

Figure 3.4.1.2 Inner Rate Loop and Steering Logic

function dot= Steering(wdcom,we,delta,t)
global J m ref quad hcmg d2r r2d wcmg zeta
global Acc_Lim Rat_Lim kr Es Ps Fs
%
% State Variables (x)
% x(1-3) = Jerk Limiter
% we(3) = Vehicle rate error
% delta(4)= Gimbal angles

dot= zeros(7,1); % 7 outputs

for i=1:4
 A(:,i)=(-sin(delta(i))*ref(:,i) + cos(delta(i))*quad(:,i))*hcmg(i);
end
wdot= kr*we; % rate error

% Variable Acceleration Limit
wdotlim= sqrt(Acc_Lim*sqrt(we'*we));
wdotrate= sqrt(wdot'*wdot);
if wdotrate>wdotlim; wdot=wdot*wdotlim/wdotrate; end

% Fixed Rate Limit
wdotmag= sqrt(wdot'*wdot); dot(1)= wdotmag;
if wdotmag > Rat_Lim; wdot= wdot*Rat_Lim/wdotmag; end
hdot = J*wdot; dot(2)= sqrt(hdot'*hdot); % Desired torque

% Singularity avoidance
dot(3)=det(A*A'); lamb= Ps/det(A*A');
E= [1 Es*sin(Fs*t) Es*cos(Fs*t+pi/2);
 Es*sin(Fs*t) 1 Es*sin(Fs*t-pi/2);
 Es*cos(Fs*t+pi/2) Es*sin(Fs*t-pi/2) 1];

pinverse= A'*inv(A*A' + lamb*E);
dot(4:7)= -pinverse*hdot; % Delta dot command

123

The CMG dynamics block captures the CMG second order dynamics and the gimbal rate and
acceleration limits. The outputs from the CMG dynamics block are CMG gimbal rates and gimbal
angles,),(ii δδ .

CMG dynamics with
rate and acceleration limits

Aclim Wclim

Gimbal
Rates

Gimbal
Angles

Gimbal
Rate

Comds

2
delta

1
deldot

-K-

w^2

delta

delta

deldd

delddot

deld

deld

1
s

Int3

1
s

Int2

1
s

Int1

-K-

2z/w

 deldot

 deldd delta

1
deldc

The ACS Max-Energy ACS block is shown expanded below and its logic is implemented in
function “Max_Energy_ACS.m”. The algorithm generates a vehicle rate command (wc) from which
the body rate (wb) is subtracted to calculate the rate error (werr) which commands the inner rate
control loop. The PID integrator switching logic is also implemented in this function.

Max-Energy Attitude Control Logic

quatern
error (3)

rate error

ACS states

1
we

x5x4

wcd
-K-

r2d

qe

qe

qe

kayin

kayin

kay

kay

filt intgr

errinx

MATLAB
unction

Qe2Ater

MATLAB
Function

Max-Energy
ACS

1/s

Int5

em

em

emu

3
qf

2
qc

1
wb

kay

wcd

x_dot

x

x

wc

qe

124

Simulation Results

The initialization file “Start.m” initializes the Simulink models before running the simulations. This
m-file loads the spacecraft mass properties, CMG parameters, and a transformation matrix Tc2b
from CMG to body coordinates. It calls function M4.m to calculate the matrices M, R, and Q. It
defines the CMG gimbal system bandwidth, damping, plus gimbal rate and acceleration limits. It
defines also spacecraft ACS and steering max rate limits and max accelerations, ACS gains, the
singularity avoidance parameters, and the rotation command eigenaxis. The rotation angle
command is defined inside the quaternion command yellow block in the simulation model. The
simulation results in Figure (3.4.1.3) show the ACS response to a 90° maneuver.

Figure 3.4.1.3(a) System performs a perfect rotation about the commanded eigenaxis achieving very
small attitude errors in 20 seconds.

125

Figure 3.4.1.3(b) Max acceleration is used to reach max momentum capability where the vehicle
maintains constant rate until acceleration is reversed to slow it down to its target position.

126

Figure 3.4.1.3(c) System momentum remains constant (zero) throughout the maneuver. At approx. 20
seconds the PID integrators are turned on to further attenuate attitude errors. The gimbal angles are
at constant positions during the middle section of the maneuver maximizing the spacecraft momentum
along the commanded eigenaxis. The gimbal rates and torques are zero when the momentum is
constant.

127

Linear Frequency Domain Analysis

The file “freq.m” performs linear analysis in the frequency domain. It linearizes two Simulink
models. The open-loop model “Open-Loop.mdl” in figure (2.4.1.4) is used to calculate the
frequency response and the phase/ gain margins shown highlighted red in figure (2.4.1.5). In the
following example we calculate the frequency response across the open yaw loop with the pitch and
roll loops closed.

1
out

delta

deldot

wb

quatern

Spacecraft
Dynamics

we

delta

deldot

Singularity Avoidance
& Steering Logic

em

wb

qf

we

Attitude
Control
System

-1

1
in rate

error

Figure 3.4.1.4 Linear Model “Open_Loop.mdl” used for Stability Analysis

Figure 3.4.1.5 Stability margins in yaw, roll and pitch are almost identical

128

The closed-loop model “Closed_Loop.mdl” in Figure (3.4.1.6) performs sensitivity analysis to
external disturbances in the frequency domain. Figure (3.4.1.7) shows the spacecraft attitude
sensitivity response to disturbance torques. These frequency analysis models use linearized versions
of the attitude control system with the PID integrator turned on. They also use the Matlab functions
“Lin_ACS.m”, and “Lin-Steering.m” that have all the non-linear controls taken out.

attitude
dispersiondisturb torque (3)

1
theta

delta

deldot

Tdist

wb

quat

theta

Spacecraft
Dynamics

we

delta

deldot

Singularity Avoidance
& Steering Logic

wb

qf

we

Attitude
Control
System1

1
Tdist

rate
error

body rate f eedback

quaternion f eedback

Figure 3.4.1.6 Closed-Loop Model “Closed_Loop.mdl” Used for Sensitivity Analysis

Figure 3.4.1.7 Sensitivity Analysis Sigma plot between disturbance torque (vector) and attitude errors

129

3.4.2 Detailed Simulation Model using 4 CMG and Max-Energy Control

Our previous CMG simulation model was a simple introduction. In this section we will upgrade it
by including more details in the CMG dynamics. We previously assumed ideal CMG actuators,
where the gimbal rates are equal to the commanded rates. In reality, the CMG gimbal rates are
controlled by closed-loop motor driven servo systems which supply the torques that control the
rates. The current simulation uses equations (3.11) and (3.12), where the CMG torque consists of
two terms: the control torque Tcon and an estimate of the gyroscopic torque (cmgH×ω) which
cancels out the gyroscopic effects. The CMG momentum is calculated by integrating the second
part of equation (3.11). The CMG torques are calculated from equations (3.2), (3.4) and (3.10). The
gimbal rates are obtained by integrating equation (3.16). The quaternion output is obtained by
integrating equation (3.17).

Tc

wb

quat

delta

deldot

Spacecraft
Dynamics

wb

wc

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator

deldc

deldot
Tc

CMG Gimbal
Controlswb

qc

qf

wc

Attitude
Control
System

attitude quaternion

body rate

rate
cmd

rates

gimbal rates

gimbal angles

Figure 3.4.2.1 Simulation model “MaxEn_4SGCMG_Gimbals.mdl”, consisting of rigid spacecraft and
4 SG-CMGs, controlled by Max-Energy ACS controller and 4 gimbal torque motor servos

The simulation model used in this example is “MaxEn_4SGCMG_Gimbals.mdl”, shown in Figure
3.4.2.1, and it is located in folder “… \Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG
Control\(b) RigBody 4SGCMG ACS w Gimbal”. It consists of four main blocks. The first block on
the left hand side is a quaternion attitude controller that receives a quaternion command and the
spacecraft attitude quaternion and calculates the vehicle rate command. It is implemented in Matlab
function “Max_Energy_ACS.m” and it is identical to the ACS described in Figure 3.4.1.1. The
steering logic receives the body rate command and calculates the CMG gimbal rate commands,
which eventually produce the required torques on the spacecraft. It is implemented in Matlab
function “Steering.m” and it is similar to the logic described in the previous example. The gimbal
rate commands drive the gimbal motors which produce the gimbal torques required to rotate the
CMG gimbals. The fourth block on the right is the spacecraft plus CMGs model which includes also
the gimbal dynamics.

130

Figure 3.4.2.2 shows a simple diagram of the CMG gimbal control system which is used to control
the rates of the CMG gimbals. It consists of a motor controlled by a PID controller. There are four
of these controllers, one for each gimbal. The inputs are gimbal rate errors and the outputs are
torques that drive the gimbals which are inside the green Spacecraft/ CMG dynamics block. Strong
motors are sometimes needed because the control torques which rotate the gimbals have to work
against strong gyroscopic torques which act like disturbances. The PID gains are calculated in the
initialization script “start.m”.

() ()
a

cmg
bcmggacmggi K

KJKJK
ωλζ

ωζλωλ
+

=+==
2

21 23

where:

Jg is the CMG rotor inertia about the gimbal (slug-ft2)
ωcmg is the gimbal servo bandwidth (rad/sec)

The gains satisfy the following 3rd order characteristic equation

()()22 2 cmgcmgcmg ss ωζωλω +++

Gimbal
TorquesTorque

Limit

Gimbal
Rate

Comds

1
Tc

-K-

Ki

Kb

Kb

-K-

Ka

1
s

Int1

1
s

Int

2
deldot

1
deldc

Figure 3.4.2.2 Gimbal Torque Motor with PID Control System

The spacecraft plus CMG dynamics block is shown in Figure 3.4.2.3. The inputs are CMG gimbal
torques which control the gimbal rates. The outputs are body rates, attitude quaternion, gimbal
angles, and gimbal rates. The dynamics are implemented in Matlab function “SC_CMG_Gimbal.m”,
shown below.

131

p

In

clu
di

ng
 G

im
ba

l D
yn

am
ics

Sp
ac

ec
ra

ft
Ra

te
 in

 th
e

Gi
m

ba
l D

ire
ct

io
n

Gi
m

ba
l R

at
es

an
d

An
gl

es
4

de
ld

ot

3
de

lta

2 qu
at

1wb

wb wb

th
et

a

th
et

a

sin sin

de
lta

de
lta

de
ld

de
ld

ot

de
ld

d

de
ld

d

ac
os

ac
os

(q
4)

Tc
m

g

Tc
m

g

M
AT

LA
B

Fu
nc

tio
n

Sp
ac

ec
ra

ft
+

CM
G

+

G
im

ba
l D

yn
am

ic
s

Pr
od

uc
t

1/
s

In
t1

8

1/
s

In
t1

Hs
ys

Hs
ys

Hc
m

g

Hc
m

g

Ex
te

rn
al

To
rq

ue

em
u

em

em
u

-K
-

2*
r2

d

 w
b2

 w
b1

 w
b

 ro
t a

ng
le

(d

eg
)

ex
is

 e
xi

s

 d
el

d

U
U(

E)

1Tc

G
im

b
Tr

qs

xd
ot h

H
s

Tc
m

g
Tg

i

wb h
de

ld
ot

de
lta qt

dd
i-d

dr

dd
i di

qu
at

er
ni

on

di
-d

r

132

Figure 3.4.2.3 Spacecraft plus CMG Dynamics Block

133

Spacecraft Dynamics Function SC_CMG_Gimbal

function xdot= SC_CMG_Gimbal(x,Tci,Td) % s/c Dynamics with CMG
global J Jinv Jgi m ref quad hcmg d2r r2d
global bet gam Tc2b

% State Variables (x)
% x(1:3) = Body rates (w) (rad/sec)
% x(4:6) = CMG Momentum body (h) (ft-lb-sec)
% x(7:10) = Gimbal rates (delt-dot) (rad/sec)
% x(11:14) = Gimbal angles (delta) (rad)
% x(15:18) = Quaternion
% Inputs:
% Tci(4) = Gimbal Torques (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)

xdot= zeros(28,1);
w = x(1:3); % Body rates
h = x(4:6); % CMG Momentum
deldot= x(7:10); % Gimbal rates
delta = x(11:14); % Gimbal Angles
qt= x(15:18); % Quaternion
[Pj,thd,phd,ddd]= Transforms(bet,gam,delta,w);

Tcmg=zeros(3,1); h2=Tcmg;
for i=1:4
 Mj=[Tci(i); ... % CMG Torque in CMG axis
 hcmg(i)*deldot(i); ...
 0];
 Tcmg= Tcmg -Tc2b*Pj(:,:,i)*Mj; % Torque on Vehicle
% h2= h2 + (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
end

Hs = J*w + h; % System Momentum

xdot(1:3)= Jinv*(Tcmg -cross(w,J*w) +Td); % Vehicle acceleration
wdot=xdot(1:3); % Vehicle Acceleration
xdot(4:6)=-Tcmg -cross(w,h); % H-dot
for i=1:4
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(6+i)= (Tci(i)-hcmg(i)*(thd(i)*sd-phd(i)*cd))/Jgi; % Gimbal accelr delt-ddot
 xdot(10+i)= x(6+i); % Gimbal rates delta-dot
end

xdot(15:18)= 0.5*[0 w(3) -w(2) w(1); % Quaternion Update
 -w(3) 0 w(1) w(2);
 w(2) -w(1) 0 w(3);
 -w(1) -w(2) -w(3) 0]*qt;
xdot(19:21)= Hs; % System Momentum Hs
xdot(22:24)= Tcmg; % CMG Torques on Vehi
xdot(25:28)= ddd; % delta_dot (Inert-Relat)

134

Simulation Results

The Simulink model described will be used here to demonstrate a couple of maneuvering
simulations. The simulation and maneuver parameters are loaded into Matlab by the initialization
file “start.m”. In the first case we have a typical maneuver without singularity problems. In the
second case a singularity occurs while maneuvering. The file “pl.m” plots the simulation results.

Simulation 1 A typical 100 (degrees) maneuver (without singularity)

In this case we are commanding the spacecraft to rotate 100º in an arbitrary direction (1, 1, -1). The
algorithm uses a singularity proximity measure, which is the determinant of the TAA matrix. When
this measure becomes very small it is an indication of singularity occurrence. In this case we hit a
low point at 10 seconds but it is not a real singularity. The spacecraft maneuvers smoothly towards
the commanded direction maintaining an almost constant eigenaxis, body rate, and CMG
momentum. The CMG torque and phase-plane show an acceleration pulse in the beginning and at
the end of the maneuver. The deceleration is not as high and lasts longer than the acceleration.
Shortly before the 30 seconds when the error becomes small the “kay” factor drops to zero which
turns on the PID controller that keeps the steady-state error in the 10-7 level. The four gimbal rates
versus gimbal angles are also shown in phase-plane. Notice that the system momentum is
maintained at zero throughout the maneuver.

135

136

Simulation 2 100 (degrees) maneuver with Singularity Present

The following simulation results demonstrate the effectiveness of the singularity avoidance
algorithm to prevent a gimbal lock situation. Gimbal lock occurs when the CMGs cannot provide
the required torque in the direction demanded by the attitude control logic. The algorithm uses a
singularity proximity measure, which is the determinant of the TAA matrix, and when this measure
becomes very small it introduces a perturbation at the gimbals to get around the singularity. In the
following simulation we are commanding a 100º maneuver in the direction (0.2, -0.4, 0.6). At
approximately 7 seconds the determinant of the singularity measure drops to almost zero. A
perturbation signal is introduced by the singularity avoidance algorithm that distorts the constant
body rates and CMG momentum which were observed in the previous simulation case during
maneuvering. It also causes a CMG torque disturbance at 16 seconds. Despite the singularity
occurrence the spacecraft attitude continues to rotate towards the target direction, not directly as in
the previous simulation where the eigenaxis was maintained constant, but it converges towards the
target and at approx 30 seconds when the error becomes small the “kay” factor drops to zero which
turns on the PID controller that keeps the steady-state error in the 10-7 level. Notice that the system
momentum is maintained at zero throughout the maneuver.

137

138

3.4.3 Adding Flexibility to the Four CMG Simulation Model

This time we will go one step further and include structural flexibility. The Simulink model in this
example is “MaxEn_4SGCMG_Gimbals_Flex.mdl”, shown in Figure (3.4.3.1). The Matlab and
other data files used are in directory “…\Examples\Flex Agile Spacecraft with SGCMG &
RCS\CMG Control\(c) Flex 4SGCMG ACS w Gimbal”. It is very similar to the previous model,
described in section 3.4.2, but it includes structural bending. The attitude control law and steering
logic are the same, but some of the control parameters were adjusted to accommodate flexibility.
The simulation data are loaded into Matlab by executing file “Start.m”, and the file “pl.m” plots the
simulation results, as in previous examples.

Tc

wf

quat

delta

deldot

Spacecraft
Dynamics

wb

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator

deldc

deldot
Tc

CMG Gimbal
Controlswb

qc

qf

we

Attitude
Control
System

attitude quaternion

rate
error

rates

gimbal rates

gimbal angles

body rate + f lex

Figure 3.4.3.1 Simulation model “MaxEn_4SGCMG_Gimbals.mdl”, consisting of rigid plus flexible
spacecraft dynamics and 4 SG-CMGs

As you can see in Figure 3.4.3.2, the main difference of this simulation model from the previous
one shown in figure 3.4.2.3 is that the spacecraft dynamics (green) block includes flexibility. The
structural flexibility subsystem is a state-space model shown in detail in Figure 3.4.3.3. It is loaded
from file “flex_only_fem_s.m” which was created by Flixan “flex spacecraft modeling program” in
section 1.1 and its title is “Flex Only Spacecraft with RCS and CMG”. It has the rigid-body modes
removed because the rigid-body dynamics is implemented in Matlab function
“SC_CMG_Gimbal.m”, which contains also the CMG dynamics. The coupling between the rigid
and flex models is not straightforward. The 4 CMG gimbal torques drive the rigid-body dynamics
as they are controlled by the 4 gimbal servos attempting to maintain the commanded gimbal rates.
The torque motors have to be strong enough because in addition to the CMG load inertia they also
have to fight the gyroscopic torque ()δφδθ cossin  −cmgh which is not small.

The inertial gimbal rates iδ rotate the CMG momentum vectors generating torques which produce
body rates, and attitudes. The combined CMG torque in vehicle axes (Tcmg) is also driving the

139

flexibility state-space model to excite the structure modes. The flex model output consists of the
flex contributions of the body rates which are added to the rigid-body rates to produce the total body
rates. The quaternion is updated using the total body rates, including flexibility. The function
“SC_CMG_Gimbal.m” which implements the spacecraft dynamics is listed below.

Figure 3.4.3.2 Spacecraft dynamics subsystem includes CMG gimbals plus structural flexibility

Sp
ac

ec
ra

ft
wi

th
 4

 S
G

CM
G

In

clu
di

ng
 G

im
ba

l D
yn

am
ics

 a
nd

 F
le

xib
ilit

y

Gi
m

ba
l R

at
es

an
d

An
gl

es

Gi
m

ba
l t

or
qu

es
dr

iv
in

g
th

e
fle

x
m

od
elBo

dy
 R

at
es

w
ith

 F
le

x

4
de

ld
ot

3
de

lta 2 qu
at

1wfwbwt

th
et

a

th
et

a

sin sin

de
lta

de
lta

de
ld

de
ld

ot

de
ld

d

de
ld

d

ac
os

ac
os

(q
4)

Tc
m

g
Tc

m
g

M
AT

LA
B

Fu
nc

tio
n

Sp
ac

ec
ra

ft
+

CM
G

+

G
im

ba
l D

yn
am

ic
s

Pr
od

uc
t

1/
s

In
t1

8

Hs
ys

Hs
ys

Hc
m

g

Hc
m

g

Tc
m

g
wb

 #
2

Fl
ex

ib
ili

ty
 O

nl
y

Ex
te

rn
al

To
rq

ue

em
u

em

em
u

-K
-

2*
r2

d

 w
t

 w
rb

 w
b

flx
 ro

t a
ng

le

(d
eg

)

ex
is

 e
xi

s

 d
el

d

U
U(

E)

1Tc

G
im

b
Tr

qs

xd
ot

H
s

wf Tc
m

g
dd

d

wb h
de

ld
ot

de
lta qt

dd
i

di

qu
at

er
ni

on

wr
b+

wf
le

x

140

Spacecraft Dynamics Function SC_CMG_Gimbal.m

function xdot= SC_CMG_Gimbal(x,Tci,Td,wf) % s/c Dynamics with CMG
global J Jinv Jgi m ref quad hcmg d2r r2d
global bet gam Tc2b Jgi Jsi Joi

% State Variables (x)
% x(1:3) = Body rates (w) (rad/sec)
% x(4:6) = CMG Momentum body (h) (ft-lb-sec)
% x(7:10) = Gimbal rates (delt-dot) (rad/sec)
% x(11:14) = Gimbal angles (delta) (rad)
% x(15:18) = Quaternion
% Inputs:
% Tci(4) = Gimbal Torques (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)
% wf(3) = Flex Body Rate

xdot= zeros(31,1);
w = x(1:3); % Rigid-Body rates
wt= w+wf; % Total body rate
h = x(4:6); % CMG Momentum
deldot= x(7:10); % Gimbal rates
delta = x(11:14); % Gimbal Angles
qt= x(15:18); % Quaternion
[Pj,thd,phd,ddd]= Transforms(bet,gam,delta,w);

Tcmg=zeros(3,1); h2=Tcmg;
for i=1:4
 sd=sin(delta(i)); cd=cos(delta(i));
 Mj=[Tci(i); ... % CMG Torque in CMG axis
 deldot(i)*((Jsi-Jgi)*(thd(i)*cd+phd(i)*sd) +hcmg(i)); ...
 deldot(i)* (Jgi-Joi)*(phd(i)*cd-thd(i)*sd)];
 Tcmg= Tcmg -Tc2b*Pj(:,:,i)*Mj; % Torque on Vehicle
% h2= h2 + (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
end

Hs = J*w + h; % System Momentum

xdot(1:3)= Jinv*(Tcmg -cross(w,J*w) +Td); % Vehicle acceleration
wdot=xdot(1:3); % Vehicle Acceleration
xdot(4:6)=-Tcmg -cross(w,h); % H-dot
for i=1:4
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(6+i)= (Tci(i)-hcmg(i)*(thd(i)*sd-phd(i)*cd))/Jgi; % Gimbal accelr delt-ddot
 xdot(10+i)= x(6+i); % Gimbal rates delta-dot
end

xdot(15:18)= 0.5*[0 wt(3) -wt(2) wt(1); % Quaternion Update
 -wt(3) 0 wt(1) wt(2);
 wt(2) -wt(1) 0 wt(3);
 -wt(1) -wt(2) -wt(3) 0]*qt;
xdot(19:21)= Hs; % System Momentum Hs
xdot(22:24)= wt; % Total Vehi rate
xdot(25:27)= Tcmg; % CMG Torques on Vehi
xdot(28:31)= ddd; % delta_dot (Inertial-Relativ)

141

Flex Only Spacecraft with RCS and CMG
file: flex_only_fem_s.m

% Inputs = 19
% 1 Force No 1 Applied at Node # 8 (lbf)
% 2 Force No 2 Applied at Node # 9 (lbf)
% 3 Force No 3 Applied at Node # 10 (lbf)
% 4 Force No 4 Applied at Node # 11 (lbf)
% 5 Force No 5 Applied at Node # 12 (lbf)
% 6 Force No 6 Applied at Node # 13 (lbf)
% 7 Force No 7 Applied at Node # 14 (lbf)
% 8 Force No 8 Applied at Node # 15 (lbf)
% 9 Force No 9 Applied at Node # 16 (lbf)
% 10 Force No 10 Applied at Node # 17 (lbf)
% 11 Force No 11 Applied at Node # 18 (lbf)
% 12 Force No 12 Applied at Node # 19 (lbf)

% 13 Force No 13 Applied at Node # 5 (lbf)

% 14 Force No 14 Applied at Node # 7 (lbf)
% 15 Force No 15 Applied at Node # 7 (lbf)
% 16 Force No 16 Applied at Node # 7 (lbf)

% 17 Torque No 1 Applied at Node # 6 (ft-lb)
% 18 Torque No 2 Applied at Node # 6 (ft-lb)
% 19 Torque No 3 Applied at Node # 6 (ft-lb)

% Outputs = 21
% 1 X-Accelerat. Sensed at Node # 2 (ft)
% 2 Y-Accelerat. Sensed at Node # 2 (ft)
% 3 Z-Accelerat. Sensed at Node # 2 (ft)

% 4 X-Accelerat. Sensed at Node # 4 (ft)
% 5 Y-Accelerat. Sensed at Node # 4 (ft)
% 6 Z-Accelerat. Sensed at Node # 4 (ft)

% 7 X-Accelerat. Sensed at Node # 7 (ft)
% 8 Y-Accelerat. Sensed at Node # 7 (ft)
% 9 Z-Accelerat. Sensed at Node # 7 (ft)

% 10 X-Rotation Sensed at Node # 2 (radian)
% 11 Y-Rotation Sensed at Node # 2 (radian)
% 12 Z-Rotation Sensed at Node # 2 (radian)

% 13 X-Rot. Rate Sensed at Node # 2 (radian)
% 14 Y-Rot. Rate Sensed at Node # 2 (radian)
% 15 Z-Rot. Rate Sensed at Node # 2 (radian)

% 16 X-Rot. Rate Sensed at Node # 1 (radian)
% 17 Y-Rot. Rate Sensed at Node # 1 (radian)
% 18 Z-Rot. Rate Sensed at Node # 1 (radian)

% 19 X-Rot. Rate Sensed at Node # 4 (radian)
% 20 Y-Rot. Rate Sensed at Node # 4 (radian)
% 21 Z-Rot. Rate Sensed at Node # 4 (radian)

Body to
CMG axisCMG to

Body axis 1
wb #2

wb #4

wb #2

-K-

r2d1

mem

att

acc #7

acc #4

acc #2

K*u

Tc2b

K*u

Tb2c

x' = Ax+Bu
 y = Cx+Du

State-Space
Ftank

Fjet

Feng

K*u

Ctr

K*u

Ctr

Tcmg
 Tcmg

1
Tcmg

 3

 3]

 1

[nt

Figure 3.4.3.3 Flex model is in State-Space form in file (flex_only_fem_s.m)

The transformation matrices from CMG to body axes (Tc2b) and from body to CMG (Tb2c) are
needed in order to couple the flex model with the rigid-body dynamics. The flex model is in body
coordinates, but the spacecraft model (originally defined in body) was transformed to CMG
pyramid coordinates. So the combined model is in CMG array coordinates.

142

The Max-Energy attitude control law is shown in Figure 3.4.3.4. It is implemented in function
“Max_Energy_ACS.m” and it operates in two modes: the maneuvering mode, and the PID control
mode. In the beginning of the maneuver, kay=1. The integrator of the PID is turned off, and the
spacecraft rate is commanded a non-linear parabolic trajectory which is a function of the quaternion
attitude error. The spacecraft rate is also limited during maneuvering to a steady rate along the
commanded eigenaxis. When the rate versus attitude error trajectory reaches the parabolic line in
the phase-plane the trajectory converges towards the origin, bringing both the rate and attitude error
to zero simultaneously in all 3 directions. When the attitude error becomes sufficiently small
(dictated by the logic in the ACS) the “kay” factor switches to zero turning the PID integrators on,
to further attenuate the attitude error. The switching of kay from 1 to zero is a function of both: rate
and attitude error magnitudes combined. This error magnitude signal is filtered (by filter state x6) to
smooth out the transitioning of the "kay" factor from maneuvering to PID control. The states x4 and
x5 in the ACS are also used to provide a clean transitioning of kay.

Max-Energy Attitude Control Logic

quatern
error (3)

rate error

ACS states

rate feedback
with flex

rate comd

filtered error
for PID switch

1
we

x6

x5
x4

qe

qe

qe

kayin

kayin

kay
kay

filt intgr

in ou

filt

errinx

MATLAB
Function

Qe2Ater

MATLAB
Function

Max-Energy
ACS

1/s

Int5

emu

em

em

3
qf

2
qc

1
wb

kay

x_dot

x

x

qe

wc

Figure 3.4.3.4 Max Energy Attitude Control Law is implemented in function (Max_Energy_ACS.m)

143

The CMG steering logic is shown in Figure 3.4.3.5. It controls the spacecraft rate as commanded by
the ACS. It is the D part of the PID control law. It receives the spacecraft rate command from the
ACS and it commands the gimbal rates as needed in order to achieve the required CMG control
torques on the spacecraft. Initially it calculates an acceleration command proportional to the rate
error. This acceleration command is limited, as needed, proportionally in all directions in order to
maintain an eigenaxis rotation.

The algorithm calculates the matrix A(δ), as shown in equation 3.15 and uses pseudo-inverse to
invert it, as shown in equation 3.3.4, in order to calculate the gimbal rate commands. Since A is a
function of δ the steering function also needs the gimbal angles δ as inputs at every instant. The
singularity avoidance logic is also included here. The clock input is needed for the phasing in the
off-diagonal elements in the singularity avoidance perturbation matrix (E).

Rate Controller, Steering
and CMG Dynamics

Gimbal Rate
Commands

(rad/sec)
Rate error

Body rate

1
deldot

wdot-com

time

time

det
det

MATLAB
Function
Steering

em

em

Clock

 wb

 det

 Torq

 Tci

3
delta

2
we

1
wb

xdot
deldot deldot_com

Figure 3.4.3.5 Rate Control and CMG Steering Logic, implemented in function “Steering.m”

144

Initialization File "Start.m"

The initialization file "start.m" initializes the simulation. It loads the vehicle mass properties in body
coordinates which are transformed to CMG pyramid coordinates, see Figure(). It also loads the
flexibility state-space model, the transformation matrices, CMG parameters, orientation angles,
gimbal rate limits, and gains for the gimbal control system. It initializes also the spacecraft state-
vector, sets torque limits, max acceleration and rate limits, and parameters for the singularity
avoidance logic.

global J Jinv m ref quad hcmg d2r r2d wcmg zeta
global Acc_Lim Rat_Lim kr ki kp Es Ps Fs wlim mx
global bet gam Jgi Jsi Joi
d2r= pi/180; r2d=180/pi;

[Af, Bf, Cf, Df] = flex_only_fem_s; % Load Flex Only Spacecr Dynamics
J= [0.17E+94, -0.16e+93, 0.11E+92; % Vehicle MOI matrix in (slug-ft^2).
 -0.16e+93, 1.32E+94, 0.31E+92;
 0.11E+92, 0.31E+92, 1.41E+94];
Tc2b= [0, 0, 1; ... % Transformation Matrix
 0, 1, 0; ... % from CMG to Body Axis
 -1, 0, 0]; Tb2c= inv(Tc2b);
J= Tb2c*J*Tc2b; Jinv= inv(J); % Convert Inertias to CMG axes
Ctr= Tb2c*[0 1 0; 1 0 0; 0 0 -1]; % Transform Matrix (append to body to CMG axis)

Jsi= 1.2; Jgi= 0.6; Joi= 0.8; % CMG Inertia about Spin, Gimbal, Outp axes
wcmg=500; zeta= 0.95; lamb=0.5; % CMG servo bandwidth (rad/s), damping coeff
Kii=lamb*Jgi*wcmg^3; % CMG Servo Gains
Ka=(1+2*zeta*lamb)*Jgi*wcmg^2;
Kb=(2*zeta+lamb)*wcmg/Ka;
hcmg=[1, 1, 1, 1]*1200; % CMG Momentum capability

% CMG Geometry
bet=68; % Pyramid Beta angle
gam=[90, 180, 270, 0]; % Pyramid Gamma angles
[m, ref, quad]= M4(bet); % CMG Gimbal, Spin, & Torq direction matrices

sigma0=[0; 0; 0; 0]*d2r; % Initial CMG Gimbal positions (rad)
wb0= [0; 0; 0]; % Initial body rates
h0= [0; 0; 0]; % Initial CMG Momentum (body)
deldot= [0 0 0 0]'; % Initial Gimb Rates
delta = [0 0 0 0]'; % Initial Gimb Angles
Qt0=[0; 0; 0; 1]; % Initial Quaternion
ini= [wb0',h0',deldot',delta',Qt0']; % State Integrator Initialization
wlim= 3.6*d2r; % MaxEn ACS Rate Limit 3.9 (deg/s)
Tmax= 650; % Max CMG Torque 650
mx= Tmax*[1,1,1]./[J(3,3),J(2,2),J(3,3)]; % Max accelerations x,y,z
Acc_Lim=30*d2r; Rat_Lim=12*d2r; % Steer Law Accel & Rate limit (deg/sec)
Tglim=120; Wclim=100*d2r; % CMG Model Gimbal Accelerat and Rate Limits
ki=0.07; kp=1.4; kr=10; % PID Gains: ki=0.3; kp=7.3; kr=12
Es=0.05; Ps=1.0e18; Fs=0.2; % Singul Avoid Param Es=0.01 Ps=1.0e11 Fs=0.2
xlim= inf(1,18); xlim(7:10)=Wclim*[1 1 1 1]; % State Integrator Limits

com_dir=Tb2c*[-1; 1; 1]; % Command Direct Unit Vector (body)
com_dir=com_dir/sqrt(com_dir'*com_dir); % Unit Vector [0.7; -0.6; 0.4]

145

Maneuvering Simulations Using the Non-Linear Flex Model

The following three simulation results were obtained using the non-linear Simulink model
“MaxEn_4SGCMG_Gimbals_Flex.mdl”.

Case # 1, an 80° Maneuver in direction: (-1, 1, 1)

In the first simulation, Figure (3.4.3.6), the spacecraft is commanded to maneuver 80° in direction:
(-1, 1, 1). It performs an almost perfect eigenaxis rotation maintaining nearly constant rates during
maneuvering. The 0.5 Hz structural mode affects mainly the roll axis, but it does not degrade the
flex stability. The maneuver is very symmetrical as shown in the attitude phase-plane. The CMG
control torque shows a big torque spike which gets the maneuver started. There is an almost zero
torque while maneuvering, and a decelerating torque pulse to stop the rotation. The decelerating
pulse is not as strong as the initial torque pulse. Although the rates are the same in all 3 axes the
CMG momentum is different in the 3 directions because the spacecraft moments of inertia are
different. The singularity indicator shows an initial low value in the determinant (close to
singularity) but it does not last very long and it climbs to higher values later in the maneuver. The
attitude error plot shows when it is in PID control the integrator gradually reduces the attitude error
to very low values. In the absence of external disturbances the total system momentum remains zero
during the maneuver.

Figure 3.4.3.6(a) Spacecraft performs an 80 (deg) eigenaxis maneuver

146

147

Case # 2, a 100° Maneuver in direction: (1, 1, -1)

This is a 100 (deg) maneuver in a different direction showing similar results.

Figure 3.4.3.7(a) Spacecraft performs a 100 (deg) eigenaxis maneuver

148

Figure 3.4.3.7(b) Spacecraft performs the maneuver at max rate and CMG momentum. System
momentum remains constant (zero)

149

Figure 3.4.3.7(c) When the error is sufficiently small the ACS switches to PID control

150

Figure 3.4.3.7(d) CMG Gimbal Activity

151

Case # 3, a 120° Maneuver in direction: (-0.2, 0.4, 0.4)

This maneuver hits a singularity at 10 (sec). The singularity avoidance system prevents a gimbal
lock at the expense of a very small disturbance on the spacecraft. The singularity encounter,
however, did not degrade the quality of the maneuver.

Figure 3.4.3.8(a) The singularity causes a small dent on the eigenaxis

152

153

Figure 3.4.3.8(c) The singularity causes a small disturbance on the spacecraft as the singularity
avoidance logic attempts to steer the vehicle around it.

154

Frequency Response Stability Analysis

The following model “Open_Loop.mdl” is similar to the non-linear simulation model but it has the
control laws linearized and it is used to perform linear stability analysis. It uses the linearized
functions “Lin_ACS.m” for attitude control, and “Lin_Steering.m” for steering. The control loop is
broken for frequency response analysis at the rate error command to the steering logic. Only two of
the control loops, pitch, or yaw, are analyzed. In the yaw analysis example shown in Figure 3.4.3.8,
the yaw loop is opened, but the roll and pitch loops are closed. The Matlab file “freq.m” calculates
the frequency response between the input and the output and plots the Bode and the Nichols plots.
The stability analysis plots are shown in Figure 3.4.3.9. Stability is measured by the phase and gain
margins from the red cross. This model is also used for tuning the PID gains to maximize stability.
The ACS bandwidth was reduced from the previous rigid-body analysis to avoid exciting low
frequency flex modes to instability. Compensator filters were also included in the ACS. A low-pass
filter was also included to filter out the error signal which turns on the PID to provide a smoother
transition between maneuvering and PID control.

1
out

Tc

wf

quat

delta

deldot

Spacecraft
Dynamics

wb

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator

em deldc

deldot
Tc

CMG Gimbal
Controls

wb

qc

qf

we

Attitude
Control
System

-1

-1

1
in

rate f eedback

rates

gimbal rates

gimbal angles

attitude quaternion

rate
err

Figure 3.4.3.8 Simulink Model “Open_Loop.mdl” used for frequency response stability analysis,
shown in this case for yaw axis analysis

155

Figure 3.4.3.9a Bode and Nichols Plots showing stability margins of the Pitch axis PID system

156

Figure 3.4.3.9b Bode and Nichols Plots showing stability margins of the Yaw axis PID system

157

In the previous section we used spacecraft and reaction wheel non-linear models developed in
Matlab and then we coupled them with state-space flexibility models that were developed using the
Flixan Flex Spacecraft program. Now we will use the Flixan Flight Vehicle Modeling Program
(FVP) to create similar models of the spacecraft coupled with four single gimbal CMGs, including
structural flexibility, and hopefully the results will match with the results obtained from the
previous section in folder “(c) Flex 4SGCMG ACS w Gimbal”. We will first show how to obtain the
spacecraft state-space models by using the existing data files and running the FVP in batch mode,
and then go into details to show how we create the spacecraft and flex data from scratch. The data
for this analysis is in directory “C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG &
RCS\CMG Control\(e) 4SGCMG using FVP ". The input data file is "FlexSc_CMG_FVP.Inp" the
systems file is “FlexSc_CMG_FVP.Qdr". The modal data files are the same as previously in the
RCS analysis “FlexSc_FEM.Mod" and “FlexSc_FEM.Nod". The input data file contains data for
two spacecraft with 4 SGCMGs, a rigid model and a flex model. A set of modal data consisting of
40 selected flex modes is included at the bottom of the input data file. Some unused states and
outputs are eliminated using the Flixan truncation utility. The Matlab analysis is performed in the
sub-directory "Matan".

Creating the Systems in Batch Mode

On the top of the input data file there is a batch data-set “Batch for Spacecraft with 4 SG CMG”. It
is a short script of commands that speeds up the generation of the spacecraft systems. To run the
batch, first start the Flixan program, go to folder “…Flex Agile Spacecraft with SGCMG &
RCS\CMG Control\(e) 4SGCMG using FVP”. Go to “Edit”, “Manage Input Files”, and then
“Process/ Edit Input Data”.

When the following dialog appears, click "Continue".

158

From the following dialog select the input file “FlexSc_CMG_FVP.Inp” and press the “Select Input
File” button. The menu on the right shows all the data-sets that are saved inside the input file. Select
the top batch set: “Batch for Spacecraft with 4 SG CMG”, and click on “Execute/ View Input Data”.

The Flixan program executes all the data-sets which are called by the batch and saves the spacecraft
systems in file “FlexSc_CMG_FVP.Qdr”. It also creates two Matlab state-space m-files for the
spacecraft with four CMGs that can be loaded into Matlab: a rigid-body model in file
"sc_4cmg_rb.m" and a flex spacecraft model "sc_4cmg_flex.m". Click “Exit” to end the Flixan
program. The two files are transferred to subfolder "Matan" for analysis.

159

Creating the Spacecraft Input Data from Scratch

But what if we don't already have the input data in file “FlexSc_CMG_FVP.Inp”? What if we want
to create a new set of spacecraft data from scratch in an empty “FlexSc_CMG_FVP2.Inp” file and
create the state-space model directly from the new file? I personally don't like to use the Flixan
utility menus to create new systems not because they are not efficient but because I make mistakes
or forget something and I have to do it all over again. I usually copy old models and modify them
using standard editors.

To create the spacecraft data from scratch, first start the Flixan program and select the directory
directory “C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(e)
4SGCMG using FVP ". Then go to "Analysis Tools", "Flight Vehicle/ Spacecraft Modeling Tools",
and "Flight Vehicle State-Space", as shown below.

In the following introductory menu, press "Continue".

160

The following is a file selection menu for the input and output data files. Since in this case we
assume that we don't have any input data, enter a new input file name “FlexSc_CMG-FVP2.Inp”,
and a new output file name “FlexSc_CMG-FVP2.Qdr”, that will be created and click on "Create a
New Input Set".

The Flixan program acknowledges that a new set of data will be created and it will activate a data
entering utility where the user can enter the spacecraft data interactively by means of menus and
dialogs, as shown below. Using the following flight vehicle data entering dialog first enter the title
on the top, define the number of SG-CMGs, the number of gyros and accelerometers, set some of
the menus as shown, enter also 40 flex modes and click "Update Data" to keep the data in memory.
Then go to some of the tabs at the bottom. Click on the gyros tab and start entering the gyro data.
For gyro #1 enter its location in vehicle coordinates, the direction of measurement "roll", and
specify that it is an attitude and not a rate measurement. Click on "Next Gyro" to enter the data for
gyro #2, and so on for the 9 gyros specified at the top. Remember to click on "Update Data" before
moving to the next tab. Now select another tab. Let's say the accelerometers, and start entering the
data for the first accelerometer which is measuring acceleration in the x direction. Enter also its
location in spacecraft coordinates. Click on "Next Accelerometer" to enter the data for
accelerometer #2, and so on for all six accelerometers. Remember to click on "Update Data" before
moving to the next tab. Click on the "Mass Properties" tab and do the same.

161

162

Now click on the "Single Gimbal CMG" tab to open it and enter the data required for the four SG-
CMGs. That is, starting from the first one: the gimbal direction vector, the momentum reference
direction (which in this case it is the same as the initial momentum direction), the CMG moments of
inertia about spin, gimbal, and output axes, the CMG orientation angles (β and γ) in the pyramid as
already defined, the constant CMG momentum magnitude, and the initial gimbal angle (δ0). Click
on "Next-SG-CMG" to enter the data for the second CMG, and so on. Remember to click on
"Update Data" when you finish with the SG-CMGs. You may also click on the "User Notes" tab to
enter some notes that will be included as comments in both: the input data, and in the system
(a,b,c,d) data, below the title.

When you finish entering the spacecraft data, click on "Save in File" button to save the data in file
“FlexSc_CMG-FVP2.Inp”. This will create the spacecraft data set under the title "Flexible Agile
Spacecraft with 4 SG-CMG" that you already entered. To create the spacecraft state-space model
you must click on the "Run" button, and the program would create the spacecraft system in file
“FlexSc_CMG-FVP2.Inp”. But don't do it yet, you are not ready. You have declared that you will
be using 40 structural modes but the modes have not yet been selected and saved. A set of flex
modes should also be included in the input data file. It requires a lengthy mode selection process
that will be discussed next. After the modes are selected and saved you can go back and rerun the
Flight Vehicle Modeling program, select the same input and output files, select the title of the input
data, get to the above dialog which displays the spacecraft data, and now you may click "Run" to
create the spacecraft model that will be saved in file “FlexSc_CMG-FVP2.Qdr".

163

Creating Set of Selected Modal Data

The flex model requires a set of selected modes reformatted and compatible to be processed with
the spacecraft data. From the original modal data in file "FlexSc_FEM.Mod" we must select a set of
modes, scale them to match the units of the spacecraft data, and save the selected set in file
"FlexSc_CMG_FVP.Inp ". We must first start the Flixan program and go to folder “…Flex Agile
Spacecraft with SGCMG & RCS\CMG Control\(e) 4SGCMG using FVP”. Then go to “Analysis
Tools”, “Flight Vehicle/ Spacecraft Modeling Tools”, and then to “Flex Mode Selection”, as shown
below.

164

Using the filenames menu on the right we select the modal data
filename which has an extension (.Mod), the nodes file (.Nod), the
flight vehicle input data file (.Inp), and an output filename
(Modsel.Msl), where the program will save the relative mode strength
at the completion of mode selection. The modal data and nodes map
files were used earlier in the RCS analysis. The input data file
“FlexSc_CMG_FVP.Inp” is needed because the mode selection
program needs the spacecraft data to match actuator and sensor
locations with node points from the finite elements model. The nodes
map is also used to facilitate this purpose.

Using the menu below select the spacecraft title “Flexible Agile Spacecraft with 4 SG-CMG” and
click the “Run Input Set” button.

The dialog below is used to define the number of excitation, and the number of sensor points to be
used for mode selection. These numbers do not have to be equal to the number of actual vehicle
effectors and sensors used in the spacecraft model. It is only used for mode selection purposes. We
must also define the range of modes to be evaluated (1 to 46 modes in this case). We will ignore the
first 6 modes because they are rigid body modes and we should only include structural modes in the
flex mode set. We do not define any forces excitations, but we define 3 torque excitations.
Similarly, we do not select any translational sensors but 3 rotational sensors. These locations are
only for mode selection. We will also select the graphic mode selection option where the user
selects the modes from a bar chart using the mouse. The number of modes to be selected does not
apply in this case. We click “OK” to continue.

165

The following dialog allows you to convert the units of the modal data or to switch the direction of
the coordinate axes of the finite elements model to match the rigid-body model. We click "Yes"
because the modal data are in typical Nastran units and the x and z directions are reversed.

166

The following dialog defines the scaling factors that will be used to modify the modal shapes,
slopes, generalized mass, and it will also reverse some of the directions.

The next step is to identify locations from the finite elements model (nodes) for the 3 torque
excitation points and the 3 rotational sensors points that will be used in mode selection. The nodes
mapping file “FlexSc_FEM.Nod” will be used as a reference in the process. It is included in node
selection menu that helps the user to pick excitation and sensor nodes from the modal data file for
mode strength comparison. For the 3 torque excitation points we select node #6, which is the CMG
location, to apply torques in roll, pitch, and yaw. For the 3 rotational sensor points we select node
#2, which is the location of the spacecraft gyros, to measure roll, pitch, and yaw rotations.

167

168

169

170

At this point the excitation and sensor points and directions for the mode selection process have
been defined. The modal strength for each mode is calculated based on the values of the modal
slopes at the torque locations and at the rotational measurements. When the mode shape magnitudes
at the excitation and sensor points are high at a mode frequency it implies that this mode has a
strong contribution to the overall structure flexibility. The mode selection program computes the
mode strength at each mode frequency and saves it in file “Modsel.Msl”.

171

The mode selection process, however, is not finished yet because the program needs additional info
before allowing the user to select which modes to retain from the big modal data file. Using similar
menus that display the nodes table (different light-blue color), the user must select four nodes from
the finite element model that correspond to the four CMGs which are defined in the vehicle input
data. Node #6 is selected for all four CMGs.

172

173

174

The user also selects 9 nodes (locations) for the 9 rotational sensors which are defined in the vehicle
data, title "Flexible Agile Spacecraft with 4 SG-CMG". That is, three rotations at node #2, three
rotational rates at node #2, and three rotational rates at node #1.

175

176

177

Similarly, select nodes for the 6 accelerometers. The first 3 accelerometers are at node #2, the nav
base, and the next 3 are at node #4, the solar array.

178

We must also select a point where we can apply the disturbance.

179

The program will create a smaller subset of the original modal data set and will save it at the bottom
of the input data file "FlexSc_CMG_FVP.Inp". At the end of this process the selected set of modal
data will contain only the dominant modes (between the excitation and sensor points defined), and
mode shapes only at the locations which are required by the flexible spacecraft model, such as: the
CMG locations, the gyros, and the accelerometers. A title will be created for the selected and
rescaled set of modal data. The selected modes title is "Flexible Agile Spacecraft with 4 SG-CMG,
All Flex Modes", similar to the original vehicle title plus a short attachment inserted at the end by
means of the following dialog.

At this point the mode selection program saves the list of relative mode strengths (computed
between the excitation points and directions and the sensor points and directions) in file
“Modsel.Dat”. It also displays a bar-chart plot (shown in the next page) that shows the relative
mode strength for each mode as a vertical bar, versus the mode number. All bars are initially red
before selection. The height of each bar is logarithmically proportional to the relative mode
strength. The strong modes are tall and the weak modes are short. The modal strength is a relative
number adjusted with respect to the minimum and maximum modal strengths. The user selects
some of the strongest modes from the chart by pointing the mouse cursor at the bar and clicking the
mouse to select it. The modes change color from red to green when they are selected.

Notice that the first six modes must not be selected because they are rigid-body modes, and the
rigid-body dynamics are already included in the vehicle model. We select all of the remaining flex
modes from mode #7 to mode #46, a total of 40 flex modes, and press the "enter" button to
complete the mode selection. They are the same flex modes that we selected in previous sections
using the Flex Spacecraft Modeling program.

180

181

The final step before exiting mode selection is to complete the dialog below where the user enters
some reference notes regarding the mode selection process. Describing, for example, what type of
modes were selected, and the conditions of mode selection, excitation points, measurement points,
directions, etc. This information will be included as comments below the title in the selected modes
set, which is saved in the input data file “FlexSc_CMG_FVP.Inp”.

The title of the selected modes set is “Flexible Agile Spacecraft with 4 SG-CMG, All Flex Modes”.
It contains the frequencies and the rescaled mode shapes of the selected modes at specific spacecraft
locations. This title should also appear at the bottom of the spacecraft input data set “Flexible Agile
Spacecraft with 4 SG-CMG”, below the number of flex modes. This will associate the selected
modes with the spacecraft input data when the VFP processes the data.

Conclusion

Having created both, the spacecraft data, and the selected flex modes we may now create the
flexible spacecraft state-space system. Start the Flixan program and select the directory
“C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(e) 4SGCMG using
FVP ". Then go to "Analysis Tools", "Flight Vehicle/ Spacecraft Modeling Tools", and "Flight
Vehicle State-Space". Using the following menu select the input file name
“FlexSc_CMG_FVP.Inp”, and the systems file name “FlexSc_CMG_FVP.Qdr”, and click on
"Select Files".

182

The following menu displays the titles of the two sets of spacecraft data which are saved in file
“FlexSc_CMG_FVP.Inp”. There is a rigid-body and a flexible model. We select the second title and
click on "Run Input Set". The following dialog displays the spacecraft data which are read from the
input file. We do not change anything, but click on the "Run" button which creates the spacecraft
model in file “FlexSc_CMG_FVP.Qdr”.

183

The Simulation Model

The simulation model used in this analysis is " Lin_Flex_Sim.mdl ", shown in Figure 3.5.1. It is
similar to the non-linear model shown in the previous section but is missing all the non-linearities in
the attitude control system and in the spacecraft dynamics. It uses Euler angles for attitude instead
of quaternion. The integrators in the PID are "on". It is not intended to be used for large angle
maneuvers but for analyzing stability and performance at nominal operating conditions, such as, the
initial condition when the gimbal angles are at zero and the CMG array momentum is zero.

Linear Simulation Model with Flexibility
(from FVP)

[1 1 1]

attit cmd
(deg)

wb

we

delta

deldot

Steering Logic

Tc

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater
wer

PI Control

deldc

deldot
Tc

CMG Gimbal
Controls

Figure 3.5.1 Linear Simulation Model "Lin_Flex_Sim.mdl"

The spacecraft plus CMG dynamics (green block) contains the state-space system from file
"sc_4cmg_flex.m", title: “Flexible Agile Spacecraft with 4 SG-CMG”, which was created using the
Flixan FVP. The state-space system is loaded into Matlab workspace by the initialization file
"start.m". It implements the linearized equations described in Section (2.2) Dynamic Equations of
Spacecraft with SGCMG. It is shown in detail in Figure (3.5.2). The inputs are four gimbal torques
provided by the gimbal control system designed to control the CMG gimbal rates. The gimbal servo
system and the steering were described earlier. The outputs are: spacecraft attitude, rates, and
accelerations at different locations, including flexibility. There is also gimbal rates, gimbal angles,
and CMG array momentum in body axis. The initialization file "start.m" is also loading the gimbal
control system gains, the mass properties, the CMG orientation angles, gimbal directions, and
momentum reference directions which are used by the steering logic.

184

185

The attitude controller is shown in Figure (3.5.3). It has been simplified, by removing the phase-
plane, plus rate and energy limiting non-linearities, to a PID suitable for small angles steady-state
operations. This is when "kay" switches from one to zero at the completion of the phase-plane mode
of operation. The rate feedback loop of the PID controller is in the steering block.

1
wer

-K-

kp

ki

ki

-K-

d2r

ater
atter

1
s

Int1

2
ater

1 wb

Figure 3.5.3 PI Attitude Control System

Simulation Results

The following results were obtained from the simulation model by commanding one degree attitude
rotation in all 3 axes simultaneously. This model is not intended to be used for large angle
maneuvers because it is missing all the non-linear controls which limit rates and torques and it will
use unrealistic amounts of rates and torques. This model operates entirely in PID mode and it is
intended for evaluating the spacecraft stability and performance under small angles excitation. The
results show a step response time of about 2 seconds. Flexibility is more dominant in roll (blue).
The attitude error in roll is affected by flexibility but it eventually decays due to modal damping.
The gimbal angles respond to the flex mode excitation and so does the CMG momentum.

186

Figure 3.5.4(a) Step Response and Attitude Error

187

Figure 3.5.4(c) Step Response and Attitude Error

188

Stability Analysis
The Simulink model "Open_Loop.mdl", Figure 3.5.5 is used for open-loop frequency response
analysis, and consists of the same subsystems as Figure 3.5.1. The control loop is broken for
frequency response analysis at the PI output, which is a (roll, pitch, and yaw) rate error command to
the steering logic. Only one axis is cut at a time while the other two remain closed. In the yaw
analysis example shown in Figure 3.5.5, the yaw loop is opened, but the roll and pitch loops are
closed. The Matlab file “freq.m” linearizes this model and calculates the frequency response
between the input and the output and plots the Bode and the Nichols plots. The stability analysis
plots are shown in Figure 3.5.6. Stability is measured by the phase and gain margins from the red
cross. The stability margins shown for roll and pitch are poor. Some lead-lag filters were later on
inserted in the PI output to improve margins (not shown here).

1
ou

wb

we

delta

deldot

Steering Logic

Tc

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater
wer

PI Control

em deldc

deldot
Tc

CMG Gimbal
Controls

-K-

-1

1
in

Figure 3.5.5 Simulink Model "Open_Loop.mdl" Used for Frequency Response Analysis

The frequency response and stability analysis results shown in Figure 3.5.6 are identical to the
frequency response results obtained in the previous section in Figure 3.4.3.9. The stability margins
shown are poor but they have been improved with filters in more recent simulation files.

189

190

191

192

Robustness is the ability of the system to tolerate uncertainties and variations, either internal
or external. Our next step is to analyze the spacecraft control system’s robustness to internal
parameter variations. The question is, how much parameter variations can a system tolerate
before it becomes unstable, or stops performing properly? Parameter uncertainties are
imprecise knowledge of the plant model parameters, such as in this case, the mass
properties, moments of inertia, CMG momentum, momentum direction, gimbal angle and
direction, etc. The structured uncertainties in a model are specified in terms of variations in
the actual plant parameters above and below their nominal values. We will use the IFL
method to "pull" the uncertainties out of the plant M(s). The uncertainties are represented by
a diagonal block ∆ that is connected to the plant by means of some additional inputs and
outputs, as shown in Figure (1). An input/ output pair for each parameter variation (δi).

Figure 4 Closed-Loop Plant M(s) with the uncertainties block "pulled out"

The IFL methodology is implemented in Flixan. The program reads the nominal plant
parameters for the spacecraft and the CMGs from an input file. It also reads the uncertainties
for some of the parameters from the same file. For every non-zero parameter variation the
program creates an additional input/ output pair that is supposed to hook up to a (δi) element
in the block. The magnitude of each element represents the maximum possible variation of
the parameter above or below its nominal value. In essence we create (n) additional inputs
and outputs to the plant that connect to the uncertainties block ∆, which is a block diagonal
matrix ∆= diag(δ1,δ2,δ3,...δn). For convenience the diagonal block ∆ is normalized so that its
individual elements now vary between +1 and -1. We also normalize the plant M(s) by
scaling its input/ output elements as needed to connect with the normalized ∆ whose
elements are now bounded to ±1. The individual elements of ∆ may be scalars or matrices

193

and each represents a real uncertainty in the plant. Some parameter variations which are
higher than rank-1 dependency may generate two or three (δi). An Ixz cross-product of
inertia, for example, will couple in both, roll and yaw axis, creating two separate δi's, one in
roll and another in yaw axis. In this case we treat them as two separate uncertainties. M(s)
represents the known dynamics consisting of the plant model with the control system in
closed-loop form. The augmented state-space system is used to perform robustness analysis
using µ. The system in this configuration is defined to be robust if it remains stable despite
all possible variations in the ∆ block as long as the magnitude of each individual variation is
bounded below ±δ(i), or ±1 in the normalized system. The structured singular value (µ) is the
perfect tool for analyzing this type of robustness problems in the frequency domain. The
value of 1/µ(M) represents the magnitude of the smallest perturbation that will destabilize
the normalized system M(s).

Figure1a Robustness Analysis Model

The block diagram formulation, shown in Figure (1a), is used for µ-synthesis or robustness/
performance analysis using (µ) methods. The plant has inputs and outputs that connect to
the uncertainty block. It also has inputs and outputs that connect to the control system K(s).
It also has external disturbances (w) and output performance criteria (z) which are also
normalized to unity. We say that the plant meets sensitivity requirements when the mu
frequency response between (w) and (z) is less than one at all frequencies. Similarly, and
according to the small gain theorem, the closed-loop system is robust to the specified
uncertainties as long as µ(M) across the normalized block ∆, (that is, between wp and zp) is

194

less than one at all frequencies. Robust performance is when it satisfies both simultaneously,
that is, the mu frequency response between [wp, w] and [zp, z] is less than one at all
frequencies.

The analysis files for this example are in folder: "C:\Flixan\Examples\Flex Agile Spacecraft
with SGCMG & RCS\CMG Control\(g) 4SGCMG Robust_Anal". The Flight Vehicle
Modeling program (FVP) creates two spacecraft models, a nominal model, and a similar one
that has 61 additional inputs and outputs for the 61 parameter uncertainties. Dynamically
both models are the same, except for the second model includes 61 internal parameter
uncertainties using fictitious inputs and outputs. We use the nominal model to do stability
analysis and to prove that the nominal system is stable and then we use the model with the
uncertainties to do robustness analysis. We must close the control loop (without commands)
and, as long as the system is stable, perform µ-analysis across the uncertainty inputs and
outputs to check if there is any combination of uncertainties that will drive it unstable. The
Matlab analysis is performed in folder " CMG Control\(g) 4SGCMG Robust_Anal\Matan".
The spacecraft parameters are in the input file “FlexSc_4CMG.Inp”. The file includes also a
set of modal data consisting of 40 selected modes. The mode selection process is not shown
here because it is fully described in another example. The input file also includes the
parameter uncertainties in a separate set of data, title: "Uncertainties for Flexible Agile
Spacecraft with 4 SG-CMG". The parameter uncertainties are additive variations to the
nominal spacecraft parameters. Notice that, not all parameters should be varied and the user
must use caution in selecting which parameters to vary, because perturbing some parameters
does not create a plant variation, and this causes an error in the program. In this example we
vary the spacecraft moments and products of inertia, we vary the frequencies in 8 flex
modes, that is, the strongest 8 modes. We also add uncertainty in the CMG momentum ±50
(ft-lb-sec), the momentum direction, the initial gimbal angle (δ0), the CMG moment of
inertia about the gimbal axis (Jg), and the pyramid surface orientation angles (β, γ). We did
not include variations in the gimbal directions and the CMG inertias (Js, Jo) because they do
not create plant variations, that is, only in this example.

195

Spacecraft Model Creation

To generate the spacecraft models we will skip the input data file creation process and just use the
existing spacecraft and uncertainties data which are already saved in the input file "FlexSc-
4CMG.Inp". We start the Flixan program and select the current project folder:
"\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(g) 4SGCMG
Robust_Anal”. Then from the main menu select “Analysis Tools”, “Robust Control Synthesis
Tools”, and “Modeling Vehicle Parameter Uncertainties”, as shown below.

196

From the filename selection menu select the input data file “FlexSc_4CMG.Inp”, and the output
systems file “FlexSc_4CMG.Qdr”, and click on "Select Files" button.

In the following menu choose the title of the data set that contains the spacecraft and CMG input
data in the nominal configuration and from the following menu chose the uncertainties data set.
There is only one set of uncertainties to choose from, and click "Run Input Set" in both cases.

197

The program displays the above dialog that consists of various tabs where the user may check the
validity of vehicle and uncertainties data. Each tab consists of a group of data. In the tab selection
above, the 4 Single-Gimbal CMG data and variations are shown. The parameters are in the light
blue fields on the left and the parameter variations are on the right. You may also check the pass
properties data, and the flex mode variations by clicking on the corresponding tabs.

Click on “Run” and the program generates the agile satellite state-space model and it will save it in
file “FlexSc_4CMG.Qdr”. It is also exported in Matlab format as a state-space function
“sc_4cmg_flex_unc.m” for µ-analysis in Matlab. This system includes the 61 additional inputs and
the 61 additional outputs that connect to the uncertainty block ∆. In our µ-analysis we don’t connect
it with a ∆ block, but we simply compute the µ frequency response between the 61 inputs and
outputs. Notice, that the input/ output pairs connecting to the uncertainty block ∆ is greater than the
number of parameter variations. This is because some of the uncertainties are higher than rank-1
dependency, and they couple into more than one direction since they appear in 2 equations. The
products of inertia, for example, couple in two directions. Since we do not decouple the system but
analyze roll, pitch, and yaw axes together, it is acceptable to treat then as two separate parameter
variations although they originate from a single parameter variation.

198

A much faster way to generate the spacecraft models is to run the batch set "Batch for Spacecraft
with 4 SG CMG" located on the top of the input data file. Start the Flixan program, and select the
project folder “…\Examples\Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(g)
4SGCMG Robust_Anal” as before. Then, from the Flixan main menu, go to “Edit”, “Manage Input
Files”, and “Process/ Edit Input Data”, as shown below.

The program displays the following Menu/ Dialog. From the file selection menu on the left select
the input file “FlexSc_4CMG.Inp”. The menu on the right shows the titles of the data-sets which are
included in the input file. Select the batch on the top “Batch for Spacecraft with 4 SG CMG”, and
click on the “Execute Input Data” button to process the batch set. The Flixan program will generate
the systems and save them in systems file “FlexSc_4CMG.Qdr”. If a previous version of the
systems file already exists in folder the program will ask permission to recreate it, answer "Yes".

199

The batch performs the following operations. It creates a nominal spacecraft model with 40 flex
modes, title: "Flexible Agile Spacecraft with 4 SG-CMG" in file “FlexSc_4CMG.Qdr”. It also
creates the perturbation model with the 61 uncertainties, title: "Flexible Agile Spacecraft with 4 SG-
CMG (Uncertainties)". The two state-space models are then converted to Matlab system functions,
"sc_4cmg_flex.m" and "sc_4cmg_flex_unc.m", respectively that can be loaded into Matlab. Both
systems contain roll, pitch, and yaw coupled vehicle dynamics. The second system, in addition to
the standard inputs and outputs of the first system, it includes also the 61 pairs of inputs and outputs
that connect to the uncertainties ∆ block. This is the diagonal block that contains the normalized
uncertainties which vary between -1 and +1. Some of the uncertainties couple only in one axis, but
some uncertainties couple in more than one axis.

Simulation Model

Now, let us take a look at a linear simulation model that uses the nominal spacecraft dynamics
without parameter variations. This simulation model is in file "Lin_Flex_Sim.mdl", shown in Figure
(2). The model is initialized using file "start.m", which also loads the two spacecraft systems into
Matlab workspace.

[1 1 1]

attit cmd
(deg)

wb

we

delta

deldot

Steering Logic

Tc

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater
wer

PI Control

deldc

deldot
Tc

CMG Gimbal
Controls

Figure 2 Simulink model for the Flex Agile Spacecraft with 4 SG-CMGs, in file "Lin_Flex_Sim.mdl"

The spacecraft dynamics (green) block consists of the nominal state-space system "sc_4cmg-flex.m"
(no uncertainties). The input is a vector of four CMG gimbal torques which control the gimbal rates.
The outputs are: spacecraft attitude, rates, CMG gimbal angles, and gimbal rates. The gimbal rate
commands come from the CMG steering logic, and the gimbal rate control system provides the
gimbal torques required to control the rates. The purpose of the steering logic is to control the
spacecraft rate by creating gimbal rate commands at the 4 CMG gimbals. The inputs to the steering
logic are: spacecraft rates, gimbal angles, and spacecraft rate error. The attitude control system is a
simple PI. The (D) part of the PID is included in the steering. In the simulation the spacecraft is
commanded to perform a one degree rotation in all 3 directions. The purpose of the simulation is to
demonstrate nominal system stability.

200

Figure 3a Spacecraft attitude response to one degree command in all 3 directions

Figure (3a) shows a stable attitude response to 1º command in all 3 directions. The roll axis (blue)
takes longer to settle because flexibility is stronger in roll. Figure (3b) shows the spacecraft rate and
acceleration at two separate locations with different flex mode sensitivity. Figure (3c) shows the
gimbal angles and gimbal rates. It also shows the CMG momentum. The roll momentum oscillates
as the CMGs respond to the roll structural oscillations.

201

Figure (3b & 3c) Spacecraft response to the one degree command in 3 directions

202

Linear Stability Analysis

We also perform linear stability analysis to determine the phase and gain margins of the nominal
configuration. The file "freq.m" performs the open-loop frequency response analysis using the
Simulink model "Open_Loop.mdl", shown in Figure (4). This model uses the same subsystems as
the closed-loop simulation model, but has one axis loop opened and the other two closed. The
Matlab script linearizes (using the linmod function) the system across the opened input and output,
computes its frequency response and plots the Nichols plots, as shown in Figures (5a-5c).

1
ou

wb

we

delta

deldot

Steering Logic

Tc

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater
wer

PI Control

em deldc

deldot
Tc

CMG Gimbal
Controls

-K-

-1

1
in

Figure 4 Simulink model "Open_Loop.mdl" used for linear stability analysis

203

204

Figure 5c System is nominally stable in all 3 axes

205

Robustness Analysis

Robustness analysis is performed by closing the attitude control loops (assuming that the closed-
loop system is stable) and by calculating the µ-frequency response of the system across the
normalized perturbations block ∆. Since the diagonal elements of ∆ do not vary more than ±1, the
system is assumed to be robust when the SSV of the closed-loop system across the diagonal
perturbations is less than one at all frequencies. The following Simulink model "Robust-Anal.mdl"
is used to calculate the mu.

Robustness Analysis Model
with Flexibility

Delta
Block 1

Unco

wb

we

delta

deldot

Steering Logic
Unci

Tc

Unco

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater
wer

PI Control

deldc

deldot
Tc

CMG Gimbal
Controls

1
Unci

Figure 6 Simulink model "Robust_Anal.mdl" used to calculate system robustness to parameter
variations

All subsystems are the same as the ones used in previous models, except for the spacecraft block
which now includes the additional inputs and outputs that hook up to the uncertainty block. The
spacecraft subsystem is shown in detail in Figure (7). It uses the state-space system
"sc_4cmg_flex_unc.m" which includes the 61 additional inputs and outputs which model the
uncertainties. The Matlab script "freq.m" calculates also the µ-frequency response of the linearized
system in Figure (6) assuming that the parameter variations are "real" (not "complex" because
complex variations are very conservative specially on flex mode variations). Figure (8) shows the
µ-frequency response across the ∆ block. It is less than one at all frequencies concluding, therefore,
that the system is robust to the parameter variations.

206

Figure 7 Spacecraft System from "sc_4cmg_flex_unc.m" that includes the uncertainty inputs and outputs.

207

Figure 8 The Structured Singular Value frequency response across the perturbations block ∆ is less
than one at all frequencies, therefore, system is robust to parameter variations.

208

In the previous section we analyzed spacecraft configurations using four SGCMG that perform 3-
axis attitude control of the spacecraft for quick maneuvering between targets. The control law is
efficient, symmetrical and fast because it uses the max control torque and momentum capability of
the CMG devices as it performs eigenaxis maneuvers, assuming that the pointing requirement is the
same in all directions. But what if the maneuvering requirements on the spacecraft are not the same
in all directions? For example, if we want to point an antenna or a beam of light (which is along the
spacecraft x axis) in a certain direction we are more interested in the pitch and yaw efficiency of
response and much less in roll, since roll errors do not affect antenna operation. In addition, the
spacecraft which is normally pointing nadir (towards the earth center) is required to maneuver not
more than 40 degrees from nadir. Furthermore, the spacecraft moment of inertia in roll is much less
than in pitch and yaw axes, so the torque and momentum requirement in roll would be significantly
less than pitch and yaw. It is conceivable, therefore, and since the SGCMG are very costly devices
that we may be able to get by with fewer momentum control devices.

Figure 3.6.1 The Momentum Control System in this configuration consists of one Reaction Wheel
combined with two Single-Gimbal CMGs

209

The Momentum Control System (MCS) described in this configuration consists of two single-
gimbal CMGs for pitch and yaw and only one reaction wheel for roll control, see Figure (3.6.1).
The RW momentum (spin) direction is parallel to the spacecraft roll axis and controls roll attitude.
The two SG-CMGs are spinning at constant rate and their initial (nominal) momentum directions
are along the +x and –x axis respectively, cancelling each other's momentum. Between operations
there are occasional momentum dumps using the RCS jets to prevent the MCS momentum from
reaching saturation. The momentum desaturation system is attempting to keep the CMG gimbals in
the nominal position and the RW speed at zero. Each CMG gimbals only in one direction relative to
the spacecraft and their momentum directions vary as they gimbal. CMG #1 is gimbaling in pitch,
and initially (when the gimbal is at zero and the momentum is along x) it generates a yaw torque.
The second CMG is gimbaling in yaw and it generates a pitch torque when the gimbal is in its
nominal zero position. When the CMGs are gimbaling at bigger angles, rolling torques are also
generated which are counteracted by the reaction wheel control system. The torque output direction
of each CMG varies. It is orthogonal to the momentum vector and the gimbal direction, and since
the momentum direction is constantly changing the steering algorithm must keep track of the
gimbal angles (δi) and calculate the gimbal rate commands for the two SG-CMGs. It calculates also
the roll torque command for the RW.

The Line-of-Sight (LOS) direction of the antenna is along the spacecraft x-axis, and the main
priority of the ACS is to point the LOS at the target as fast as possible, which requires pitch and
yaw maneuvering. Positioning the spacecraft in roll is a secondary priority and it is acceptable if it
takes longer to converge in roll in comparison to pitch and yaw. Attitude maneuvering in pitch and
yaw should, therefore, be performed faster using the CMG’s, while the roll axis is controlled by the
reaction wheel system which is slower. The CMG torque capability in pitch and yaw and the control
system bandwidth is much greater than the RW torque and bandwidth controlling the roll axis and
the MCS, therefore, cannot perform ideal eigenaxis maneuvers as it was demonstrated by the 4 SG-
CMG control system in previous sections. For comparison purposes, the LOS pointing error will be
shown separately from the roll error.

210

Spacecraft Dynamics

The spacecraft rotational accelerationω is a function of the internal reaction wheel torque (TRW),
the CMG internal torque (TCMG), and also the external torques (Text)

[] () extscRW
T

CMGsc TJTTJ +×−+= ωωω 001

Where: TCMG is the CMG torque and TRW is the reaction wheel torque in spacecraft body. The CMG
torque is a function of the gimbal rates and angles as defined in equations (2.2 and 2.4). It consists
of torques transmitted through the gimbals and gyroscopic torques transmitted through the bearings.
The RW motor speed control dynamics is ignored and we assume that the RW torque is equal to the
commanded torque from RW steering, but it is limited to less than ±10 (ft-lb).

The reaction wheel rate of change of momentum is a function of the reaction wheel torque which is
in the x direction. IW is the wheel moment of inertia about the spin axis.

[] RW
T

RWRW THH 001=×+ω

The reaction wheel spin rate in (rad/sec) is

w

RW
RW I

H
w

)1(
=

The CMG rate of change of momentum is a function of the internal CMG torque (TCMG). The
control torque experienced by the spacecraft in body axes due to gimbaling (δ) is (cmgH−), which is
the rate of change in the CMG momentum.

()[]δδ

ω




ATH
THH

conCMG

CMGCMGCMG

−==−

−=×+

The (2x3) matrix [A] consists of two column vectors (ai) which are functions of the gimbal angles
(δi). They are also functions of the CMG quad and reference directions (qi and ri).

() ())(21 sincos:)(iCMGiiiii hrqawhereaaA δδδ −==

The two CMG gimbal directions are in pitch and yaw:
















=

10
01
00

m

211

The two CMG momentum reference directions (initially facing in opposite x directions at zero
gimbal angles) are:















 −
=

00
00
11

r

The quad directions from the cross-product (mi x ri) are:

















−
−=
01
10

00
q

The CMG gimbal rates are controlled by a servo system that generates gimbal torques. The servo
torques are attempting to counteract the gyroscopic disturbance torques created by the spacecraft
rate. φθ  and are the spacecraft rates resolved about the CMG reference and quad axes, as defined in
equations (2.3). The CMG gimbal inertial acceleration is obtained by integrating the gimbal
moment equation below, ignoring friction. Tgi is the motor torque applied at the gimbal. Even
though the CMG moment of inertia about the gimbal Jg is relatively small, the gyroscopic moment
caused by the CMG momentum hcmg coupling with spacecraft rate is a big torque, requiring a
powerful gimbal servo-motor in order to control the gimbal rate.

() giicmgig ThJ =−+ δφδθδ cossin)(


We also check the simulation by calculating the system momentum which is always constant. In
this case it's zero because it is initialized at zero.

.constHHJH RWCMGscsys =++= ω

This dynamic model is implemented in Matlab function "SC_RW_2CMG_Dyn2.m". There is also a
simple dynamic model implemented in Matlab function "SC_RW_2CMG-Dyn1.m" that has
simplified gimbal dynamics. The gimbal torques are not calculated in this model, but the gimbal
rates are assumed to follow the commanded rates. The servo system is replaced by a 12 Hz second
order CMG gimbal rate control model. These dynamic models are used in separate simulations. The
attitude quaternion is updated using body rate with flexibility included (wt= w + wf). Flex rate at the
gyro (wf) is provided by the flex state-state model that gets excited by the MCS torque.

212

function xdot= SC_RW_2CMG_Dyn2(x,Tci,Tw,Td,wf)
global nc d2r r2d
global J Jinv Iw Jsi Jgi Joi hcmg
%--
% State Variables (x)
% x(1-3) = Body rates (w) (rad/sec)
% x(4-7) = Quaternion
% x(8:10) = h (CMG momentum)
% x(11:13) = RW Momentum
% x(14:15) = deldot
% x(16:17) = delta
% Inputs:
% Tci(2) = Gimbal Torques (ft-lb)
% Tw(1) = Reaction Wheel Torque in spacrft x-axis, (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)
% wf(3) = Flex rate only from FEM system
%--
xdot= zeros(30,1);
w= x(1:3); % S/C Body rates (rad/sec)
qt= x(4:7); % S/C Quaternion Attitude
h = x(8:10); % CMG Momentum
hrw= x(11:13); % React Wheel Momentum (body)
deldot= x(14:15); delidot=deldot; % Gimbal Rates relatv to s/c
delta = x(16:17); % Gimbal Angles (rad)

wt= w+wf; % Total body rate + flex
wr = hrw(1)/Iw; % React Wheel Rate (rad/sec)
Twi= [Tw, 0, 0]'; % Wheel Torque Vector (ft-lb)
hs = J*w + h + hrw; % System Momentum (hs)
[Pj,thd,phd,ddd]= Transforms(delta*r2d,w); % SC Rates al ref, quad, gmb

Tcmg=zeros(3,1); % Calc CMG Torque in Body
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 Mj= [Tci(i); ... % CMG Torque in CMG axis
 deldot(i)*((Jsi-Jgi)*(thd(i)*cd+phd(i)*sd) +hcmg(i)); ...
 deldot(i)* (Jgi-Joi)*(phd(i)*cd-thd(i)*sd)];
 Tcmg= Tcmg - Pj(:,:,i)*Mj; % Torque on Vehicle
 delidot(i)= delidot(i) + ddd(i); % Delta_Inertial_dot (rad)
end

xdot(1:3)= Jinv*(Tcmg +Twi - cross(w,J*w)); % Vehicle acceleration
xdot(4:7)= 0.5*[0 wt(3) -wt(2) wt(1); % Quaternion Update
 -wt(3) 0 wt(1) wt(2); % includes flex)
 wt(2) -wt(1) 0 wt(3);
 -wt(1) -wt(2) -wt(3) 0]* qt;
xdot(8:10)= -Tcmg - cross(w,h); % Hcmg_dot
xdot(11:13)= -Twi - cross(w,hrw); % R-Wheel Momentum dot
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(13+i)= (Tci(i)-hcmg(i)* ... % Gimbal acceler delta-ddot
 (thd(i)*sd-phd(i)*cd))/Jgi;
 xdot(15+i)= x(13+i); % Gimbal rates delta-dot
end

% Additional Outputs
xdot(18:20)= hs; % System Momentum
xdot(21:23)= wt; % Total Vehi rate
xdot(24:26)= h + hrw; % CMG + RW Momentum
xdot(27:29)= Tcmg + Twi; % CMG + RW Torques on s/c
xdot(30) = wr; % Wheel Rate (rad/sec)

213

 Attitude Control System

The attitude control system is shown in Figure (3.6.2). The quaternion command (Qcom) is
synthesized from the specified rotation angle and the eigenaxis command unit vector (com_dir).
The quaternion command is compared with the spacecraft attitude quaternion feedback (Qfb). The
quaternion error (qe) is calculated using function “qerror2.m”, and it is an input to the max energy
attitude control function “MaxEn_ACS.m”. The output is a body rate command (wc), in roll, pitch,
and yaw, which is an input to the steering logic. The ACS is a dual mode attitude control system. It
uses a non-linear phase-plane logic when the attitude errors are large and it switches to PID control
when the attitude error becomes small. Only the (PI) control gains are included in the ACS function.
The rate feedback (D) part is implemented in the steering function. The switching criterion between
phase-plane and PID control operations (qwm) is a combination of attitude magnitude plus rate
magnitude. When it becomes sufficiently small it triggers the switch (kay) from zero to one which
turns on the integrators that further improve command tracking performance. The control mode
switching logic is implemented by means of an integration feedback loop. The ACS implementation
is different in pitch and yaw than it is in roll using different bandwidths and PID gains. The phase-
plane parameters are also different because the roll axis response is expected to be more sluggish
than pitch and yaw which determine the Line-of-Sight (LOS) pointing performance.

Attitude
Controller

body rate
command

1
wc

x4

wcd

wc

wc

qer

ky

kay

kay

filt intgr

Qc

Qf
qe

Quaternion
Error

xdotx

Integr_5

em

em

MATLAB
Function

ACS

3
Qcom

2
Qfb

1
wb

kyx_dot
x

wc
wc

Figure 3.6.2 Max Energy Attitude Control System uses the function “MaxEn_ACS.m”

function dot= MaxEn_ACS(x,qe,wb)
global Ix Iy Iz d2r r2d
global Tmax maxvel maxvl1
% PID Attitude Controller with Energy and Velocity Limits
% Energy Manager and Maximum Velocity Limit for Large Errors
% Linear PID Controller for Small Errors
% ---
% State Variables (x)
% x(1-3) = Position Integration
% x(4) = Ky Integrator
% x(5) = Ky Filter
% Inputs:
% qe(3) = Attitude Error
% wb(3) = Vehicle Body rates

214

% Outputs:
% dot(6:8) = wc (veloc command)
% dot(9:11)= [ky,angle,qwm]
% ---
dot= zeros(11,1); % 11 outputs
Jd= [Ix, Iy, Iz]; % Ixx Iyy Izz (slug-ft^2)
tlim=[10.0, Tmax,Tmax]; % Max Torques x,y,z
mx=tlim./Jd; % Max accelerations
ki=0.08; kp=3.0; ki2=0.012; kp2=0.3; % PI Gains
a=asin(sqrt(qe'*qe)); angle=a*2*r2d; % Maneuver error angle
wbm=sqrt(wb'*wb)*r2d; % Rate Error magnitude
qwm= 0.3*(angle + wbm*3); % attit + rate error magn

q1=qe(1); qq=qe(2:3); % Split [ptch,yaw]&[roll]
ky=(1.0-x(5)); % x(5)= (from 1 to 0)
dot(1) = ki2*q1 - (ky*ki2/kp2)*(x(1) +kp2*q1); % Roll Posit Integrat.
dot(2:3)= ki*qq - (ky*ki/kp)*(x(2:3) +kp*qq); % Ptch/Yaw Posit Integrat
wccc(1) = kp2*q1 + x(1); % PI controller (x)
wccc(2:3)= kp*qq + x(2:3); % PI controller (y,z)
wcc = zeros(3,1); wc=wcc; % Initialize

% Energy Limit ---
if (qq'*qq)==0; alim=0; wclim=[0;0];
else; alim=1/sqrt((qe(2)/mx(2))^2+(qe(3)/mx(3))^2);
 wclim= sqrt(2*qq.*qq*alim); end

if q1==0; alim1=0; wclm1=0;
else; alim1= abs(mx(1)/q1); wclm1= sqrt(2*q1*q1*alim1); end

for i=1:2 % The 2 SG-CMGs
 if abs(wccc(i+1))>=wclim(i) & sqrt(qq'*qq)>0.00001 & abs(wccc(i+1))>0
 wcc(i+1)= wccc(i+1)*wclim(i)/abs(wccc(i+1));
 else; wcc(i+1)= wccc(i+1); end
end

if abs(wccc(1))>=wclm1 & abs(q1)>0.00001 & abs(wccc(1))>0 % The RW
 wcc(1)= wccc(1)*wclm1/abs(wccc(1));
else; wcc(1)= wccc(1); end

% Velocity Limit ---------------------------------------
if abs(wcc(1))>maxvl1; wc(1)=maxvl1*q1/abs(q1); else; wc(1)= wcc(1); end
if sqrt(wcc(2:3)'*wcc(2:3))>maxvel; wc([2:3],1)=maxvel*qq/sqrt(qq'*qq);
else; wc([2:3],1)=wcc([2:3],1); end
dot(6:8)= wc;

% Compute ky --
del=0; if qwm<1; del=1; end
dot(4) = del*2;
if x(4)>1; dot(4)= dot(4) + (1-x(4))*4; end
if x(4)<0; dot(4)= dot(4) - x(4)*4; end
kyin = max(0,min(1.0,x(4)));
dot(5)= (kyin-x(5))*4;
dot(9:11)= [ky,angle,qwm]';

215

CMG and RW Steering

The Momentum Control System (MCS) steering law is the inner rate loop in the attitude control
system that controls the spacecraft rate by issuing gimbal rate commands to the CMGs and a torque
command to the reaction wheel. Figure (3.6.3) shows the Simulink diagram of the steering
subsystem which is implemented in function “Steering_RW-CMG.m”.

CMG & RW Steering & Rate Control

Pitch & Yaw
Gimbal Rate
Commands

Roll RW
Torque
Comd

2
deldot

1
Twc

time

time

sat

h

det

det

ddotc
ddotc

Twc

Twc

emu

Clock

MATLAB
Function

CMG Steering
Rate Control

4
delt

3
wr

2
wcm

1
wb

Trwc
deldot

t

rate cmd

wheel rate

body rate

Figure 3.6.3 Steering and Singularity Avoidance System using the function “Steering_RW_CMG.m”

The input is spacecraft rate error (we) which is rate command minus body rate. The rate errors are
converted to acceleration commands (comw) by multiplying them with rate gains, which are
different. The roll gain is lower than pitch and yaw because of reduced bandwidth and control
authority in roll. The acceleration commands (comw) are limited by software limits that prevent
excessive torque demands. The CMG gimbal angles are also inputs to the steering control law. They
are used for calculating the gimbal rate commands and an estimate of the CMG momentum from
the following equation.

()
)(

2

1
sincos

iCMG
i

iiiiCMG hqrH ∑
=

+= δδ

The input torque (TCMG) is the internal control torque provided by the CMGs and it consists of the
commanded control torque (Tcon) plus an estimate of the gyroscopic torque cmgH×ω . The control

torque is the CMG steering logic ()[]δδ A− which is a function of the gimbal rates.
()

()[] ()estimCMGCMG

estimCMGconCMG

HAT

HTT

×−−=

×−=

ωδδ

ω


The CMG gimbal rate commands are calculated from the following equation where the second term
uses an estimate of the system momentum to counteract the gyroscopic effects due to accumulated
system momentum.

216

[]{ } ()[]
estimsyscomsc

TT
com HwJAEAA ×++−=

−
ωλδ  1

Where ()T

comcomcom www)3()2(0  = consists of only the pitch and yaw elements of the body rate
commands.

After substituting comδδ  = in the spacecraft dynamics equations we obtain the following
relationships, meaning, that the rate of change of CMG momentum is equal to the control torque,
and that the spacecraft rate is equal to the commanded rate.

()[] ()[]
estimsyscomscconCMG

com

HwJTAH
w

×+−=−==

=

ωδδ

ω




The (2x3) matrix [A] consists of two column vectors (ai) which are functions of the gimbal angles
(δi). They are also functions of the CMG quad and reference directions as shown below.

() ())(21 sincos:)(iCMGiiiii hrqawhereaaA δδδ −==

There is also a gimbal rate command limit (wclim). The term (λE) is used for avoiding singularities
(gimbal locks) in the pseudo-inversion of matrix A(δ).

)det(
10;

1)2.0sin(01.0
)2.0sin(01.01 6

AAand
t

t
E T=








= λ

The estimated system momentum consists of spacecraft plus CMG plus reaction wheel estimated
momentum.

RWCMGscsys HHJH ++= ω

The reaction wheel torque command (TRW), which controls roll, is calculated from the following
equation. The second term is counteracting the gyroscopic torque generated in roll due to spacecraft
rate coupling with system momentum. The torque command does not exceed ±10 (ft-lb).

[] []T
RWcomsXRW HwJT 001)1(•×−= ω

217

function out= Steering_RW_CMG(wb,wbc,delta,t,wr)
global m ref quad wcmg d2r r2d
global J Jinv Ix Iy Iz Iw hcmg
global Alim ddmax

% Inputs:
% wb(3) = Body rates
% wbc(3) = Body rate commands
% delta(2)= Gimbal angles
% t = time
% wr(1) = R-wheel rate (z)

krc= 5.2; krw=2.5; % CMG, RW rate gains
out= zeros(7,1); h= [0 0 0]'; % 7 outputs
we = wbc-wb; % Rate error
wdot1= krw*we(1); wdmg1=abs(wdot1); % RW Accelerat Command
wdot2= krc*we(2:3); wdotmag=sqrt(wdot2'*wdot2); % CMG Accelerat Command

% Acceleration Limit
if wdmg1>0.008; wdot1= 0.008*wdot1/wdmg1; end % Limit x accelerat
if wdotmag > Alim; wdot2= Alim*wdot2/wdotmag; end % Limit y & z accelerat

for i=1:2
 A(:,i)=(-sin(delta(i))*ref(:,i) + cos(delta(i))*quad(:,i))*hcmg(i);
 h = h + (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
end

% Singularity Avoidance Logic
lamb= 1.0e6/det(A'*A);
E= [1 0.01*sin(0.2*t);
 0.01*sin(0.2*t) 1];
pinverse= inv(A'*A + lamb*E)*A';
hrw= [1 0 0]'*Iw*wr; % RW momentum
Hsys= J*wb + h + hrw; % System Momentum
Hmcs= h+hrw; % Comb MCS Momentum

hdot = J*[0;wdot2]; % Desired torque in y,z
deldot= -pinverse*(hdot-cross(wb,Hsys)); % Delta dot command
ddmag=sqrt(deldot'*deldot); % Gimbal rate magnitude
if ddmag>ddmax % Limit Gimbal rate
 deldot=ddmax*deldot/ddmag;
end

gyro= cross(wb,hrw); % Gyro torque resolved in the x axis
out(1)= Ix*wdot1 - gyro(1); % R-Wheel Torque command
out(2:3)= deldot;
out(4:6)= h;
out(7)= 1/lamb;

218

Analysis Models and Files

The files for this analysis are located in folder “C:\Flixan\Examples\Flex Agile Spacecraft with
SGCMG & RCS\CMG Control\(d) Flex SC with 2SGCMG+RW ACS”. This folder contains the
spacecraft with RW and CMG dynamics in file “SC_RW_2CMG-Dyn2.m”, the simulation model in
file “MaxEn_RW_2SGCMG_Flex.mdl”, and the initialization file “start.m” that initializes the
simulation parameters, such as, mass properties, CMG and reaction wheel parameters and axes,
initial spacecraft attitude, rate, wheel rate, and CMG gimbal angles, acceleration and velocity limits
in the attitude control system, torque limits, and the direction of the commanded maneuver which is
a unit vector. There is also a simple simulation model that does not include detailed gimbal
dynamics and structural flexibility in Simulink file “MaxEn_RW_2SGCMG.mdl” which uses the
function “SC_RW_2CMG_Dyn1.m”. This model is also initialized by “start.m”. The CMG and RW
steering law is in function “Steering_RW_CMG.m”, and the attitude control law is in function
“MaxEn_ACS.m”. There are linearized versions of these functions in files “Steering_Lin.m” and
“ACS_Lin.m” which are used for frequency response stability analysis by running file “freq.m”. The
structural flexibility state-space model “flex_only_fem_s.m” is combined with the rigid-body non-
linear dynamics function “SC_RW_2CMG_Dyn2.m”. It was calculated in section (1) and used in
previous CMG simulations. It consists of only flex dynamics (no rigid-body modes). Although the
flex model has many inputs and outputs we are only using the transfer function between the MCS
torques at node #6 and the rate gyro sensors at node #2. There are also two plotting files “pl1.m”
and “pl2.m” that plot the simulation results from the simple and detailed simulations respectively.

219

Simple Simulation Model

The simple Simulink model “MaxEn_RW_2SGCMG.mdl” is shown in Figure (3.6.4). The ACS is
common to both models and was described earlier. The steering law is shown in Figure (3.6.5). It
calculates the RW torque command and the CMG gimbal rate commands. The RW torque is limited
to ±10 (ft-lb).

wb

wcm

wr

Twc

delta

deldot

Steering &
Rate Control

Trw

delta

deldot

wb

quat

wr

Spacecraft

wb

Qcom

Qf b

wc

Attitude
Controller

Qcom

Attitude
Command

30 deg

body rates

RW rate

quaternion f eedback

Figure 3.6.4 Simple Spacecraft model using Max Energy Control with one RW and two SG-CMG

Roll RW
Torque
Comd

Pitch & Yaw
Gimbal Rate
Commands

C G & Stee g & ate Co t o

3
deldot

2
delta

1
Twc

time

time

sat

h

det

det

Twc
Twc

em

Clock

MATLAB
Function

CMG Steering
Rate Control

deldc

deldot

delta

CMG Dynamics

3
wr

2
wcm

1
wb

body rate

wheel rate

rate cmd

t

Trwc
deldot

Figure 3.6.5 CMG and RW Steering

220

CMG Non-Linear Dynamics

2
delta

1
deldot

-K-

w^2

delta

delta

ddotc

deldot_cmd

deldd

delddot

deld

deld

1
s

Int3

1
s

Int2

1
s

Int1

-K-

2z/w

 deldot

 deldd delta

1
deldc

Figure 3.6.6 Second order CMG dynamics

Figure (3.6.6) shows the simplified 2nd order gimbal dynamics. There are no gimbal torques in this
model. The inputs are pitch and yaw gimbal rate commands for the two CMGs, and the outputs are
gimbal angles, rates, and gimbal accelerations. The integrators have limits (Wclim and Aclim) to
bound the gimbal rates and accelerations respectively. The gains are a function of the CMG servo
system bandwidth and damping coefficient (wcmg and zeta) defined in the initialization file
“start.m”. The spacecraft dynamic model is shown in Figure (3.6.7). It is implemented by Matlab
function “SC_RW_2CMG-Dyn1.m”. The inputs are RW torque, gimbal rates and angles. The
outputs are body rates, attitude quaternion, wheel rate, CMG and system momentum, and the
combined MCS torque. The file “pl1.m” plots the results when the simulation is complete.

Spacecraft, CMG & RW Dynamics

attitude
quaternion

Roll RW rate

3
wr

2
quat

1
wb

wr
wr

wb

wb

rotat

theta

sin

sin

rotation
angle

-K-

r2d

eigen
axis

acos

acos(q4)

Wr

Wb

MATLAB
Function

Veh_Dynamics

Tdist

Product

Trq

MCS
Torque

1/s
Int

Hsys

Hsys

Hcmg

Hcmg

emu

em

emu

exis

 exis

3
deldot

2
delta

1
Trw

x

x

x

xdot

RW Torque

Disturb Trq

Figure 3.6.7 Spacecraft dynamic model uses the function “SC_RW_2CMG_Dyn1.m”

221

Simulation Model with Structural Flexibility and Gimbal Controls

The detailed simulation model is in file “MaxEn_RW_2SGCMG_Flex.mdl” and is shown in Figure
(3.6.8). The ACS and Steering laws are the same as in the simple model and they were described
earlier. The CMG dynamics, however, is not represented by a second order transfer function with
rate and acceleration limits, but in this case we are modeling the gimbal rate control servo system
which provides actual torques at the CMG gimbals. This model captures the gyroscopic torques at
the gimbals due to the h×ω effects. The RW torque mechanization is the same as before.

wb

wcm

wr

delt

Twc

deldot

Steering &
Rate Control

Tw

Tg

wf

quat

wr

delta

deldot

Spacecraft
Dynamics

deldc

deldot
Tg

CMG Gimbal Cont.

wb

Qf b

Qcom

wc

Attitude
Controller

Qcom

Attitude
Command

30 deg

gimbal rates

gimbal angles

Re Wheel rate

attitude quaternion

body rate

React-Wheel Torque

Tgimb

Figure 3.6.8 Spacecraft simulation model with structural flexibility and detailed gimbal dynamics
included

Figure (3.6.9) shows the gimbal servo system that controls the gimbal rates. The inputs are gimbal
rate commands and gimbal rate measurements from the CMG resolver. The gimbal rotational
dynamics are included in the spacecraft dynamics block and will be discussed later. The outputs are
pitch and yaw gimbal torques (Tgi) for the two CMGs. It is basically a (PI) controller where its
proportional and integral gains are determined from the control system bandwidth. The bandwidth
is set high (35 Hz) because the servo has to fight the gyroscopic torques which are not small. There
is a torque limit that limits the gimbal torque because the servo motor has limited torque capability.

222

Gimbal
TorquesTorque

Limit

Gimbal
Rate

Comds

1
Tg

-K-

Ki

Kb

Kb

-K-

Ka

1
s

Int1

1
s

Int

2
deldot

1
deldc

Figure 3.6.9 CMG gimbal rate control system

The spacecraft dynamics block is shown in detail in Figure (3.6.10). The spacecraft, CMG and RW
dynamics is implemented in Matlab function "SC_RW_2CMG_Dyn2.m ", shown below. The state-
vector consists of 17 states (body rates, quaternion, CMG momentum, RW momentum, gimbal
rates, and gimbal angles). The state derivatives (xdot) are generated by the spacecraft function, they
integrated externally, and they are fed back as input states (x). The remaining inputs are: CMG
gimbal torques (Tgi), RW torque (Tw), disturbance torque (Td), and flex rate (wf) from the structural
flexibility model. A combined rigid-body plus flex rate (wt) is generated by adding the rigid-body
(w) and the flex rates (wf) together. The attitude quaternion is propagated using the combined rate
(wt). The RW angular rate (hrw) is computed from the RW momentum. The system momentum (hs)
consists of spacecraft plus CMG plus RW momentum. It is calculated to make sure it remains
constant when the external disturbances are zero.

The function "Transforms" resolves the spacecraft rates along the CMG (ri, qi, and mi) directions
based on the gimbal angles (δi), see equation (2.3) in Section 2 (Spacecraft with Single Gimbal
CMG). It computes also the projection matrix [Pj], equation (2.5) which is used to calculate the
CMG torques in the spacecraft axes. The dynamics program continues to calculate the torque
applied on each CMG along the three reference axes, that is, gimbal, spin, and output axes. The
torques are converted using matrix Pj, to total CMG torque in spacecraft axes (Tcmg). The gimbal
accelerations xdot(14:15) are computed as a function of the applied torques. Each gimbal experiences
two torques, the torque applied by the servo motor Tgi, and a gyroscopic torque as described in
equation (2.16). The motor torques are constantly trying to fight the gyroscopic torques in order to
control the gimbal rates as dictated by the steering law. The dynamics function also calculates the
combined CMG plus RW torque in body axes (Tmcs), and the combined CMG plus RW momentum
(Hmcs) in body axes. Tmcs is used as an input to the flex model to excite the structural dynamics. The
flex dynamics is a state-space model "Flex Only Spacecraft with RCS and CMG" which is read from
function "flex_only_fem_s.m" and it was used in earlier examples using 4 CMGs. It contains only
flex modes (no rigid modes). Its output (wf) loops back and becomes an input to the spacecraft
model, as shown in Figure (3.6.10). A filter is used in the out-of-plane combined rate (wt) to
attenuate a flex mode at 14 Hz.

223

function xdot= SC_RW_2CMG_Dyn2(x,Tci,Tw,Td,wf)
global nc d2r r2d
global J Jinv Iw Jsi Jgi Joi hcmg
%--
% State Variables (x)
% x(1-3) = Body rates (w) (rad/sec)
% x(4-7) = Quaternion
% x(8:10) = h (CMG momentum)
% x(11:13) = RW Momentum
% x(14:15) = deldot
% x(16:17) = delta
% Inputs:
% Tci(2) = Gimbal Torques (ft-lb)
% Tw(1) = Reaction Wheel Torque in spacrft x-axis, (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)
% wf(3) = Flex rate only from FEM system
%--
xdot= zeros(30,1);
w= x(1:3); % S/C Body rates (rad/sec)
qt= x(4:7); % S/C Quaternion Attitude
h = x(8:10); % CMG Momentum
hrw= x(11:13); % React Wheel Momentum (body)
deldot= x(14:15); delidot=deldot; % Gimbal Rates relatv to s/c
delta = x(16:17); % Gimbal Angles (rad)

wt= w+wf; % Total body rate + flex
wr = hrw(1)/Iw; % Reaction Wheel Rate (rad/sec)
Twi= [Tw, 0, 0]'; % Wheel Torque Vector (ft-lb)
hs = J*w + h + hrw; % System Momentum (hs)
[Pj,thd,phd,ddd]= Transforms(delta*r2d,w); % SC rates al (ref,quad,gimb)

Tcmg=zeros(3,1); % Calcul CMG Torque in Body
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 Mj= [Tci(i); ... % CMG Torque in CMG axis
 deldot(i)*((Jsi-Jgi)*(thd(i)*cd+phd(i)*sd) +hcmg(i)); ...
 deldot(i)* (Jgi-Joi)*(phd(i)*cd-thd(i)*sd)];
 Tcmg= Tcmg - Pj(:,:,i)*Mj; % Torque on Vehicle
 delidot(i)= delidot(i) + ddd(i); % Delta_Inertial_dot (rad)
end

xdot(1:3)= Jinv*(Tcmg +Twi - cross(w,J*w)); % Vehicle acceleration
xdot(4:7)= 0.5*[0 wt(3) -wt(2) wt(1); % Quaternion Update
 -wt(3) 0 wt(1) wt(2); % includes flex)
 wt(2) -wt(1) 0 wt(3);
 -wt(1) -wt(2) -wt(3) 0]* qt;
xdot(8:10)= -Tcmg - cross(w,h); % Hcmg_dot
xdot(11:13)= -Twi - cross(w,hrw); % R-Wheel Momentum dot
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(13+i)= (Tci(i)-hcmg(i)* ... % Gimbal acceler delta-ddot
 (thd(i)*sd-phd(i)*cd))/Jgi;
 xdot(15+i)= x(13+i); % Gimbal rates delta-dot
end

% Additional Outputs
xdot(18:20)= hs; % System Momentum
xdot(21:23)= wt; % Total Vehi rate
xdot(24:26)= h + hrw; % CMG + RW Momentum
xdot(27:29)= Tcmg + Twi; % CMG + RW Torques on s/c
xdot(30) = wr; % Wheel Rate (rad/sec)

224

Sp
ac

ec
ra

ft
wi

th
 1

 R
W

 a
nd

 2
 S

G
CM

G

In
clu

di
ng

 G
im

ba
l D

yn
am

ics
 a

nd
 F

le
xib

ilit
y

Gi
m

ba
l R

at
es

an
d

An
gl

es

Bo
dy

 R
at

es
w

ith
 F

le
x

5
de

ld
ot

4
de

lta

3 wr

2qu
at

1wf

wb wt

wr
0

wr wr

th
et

a

th
et

a

sin sin

In
ou

fil
tr

de
lta

0

de
lta

de
lta

 de
ld

de
ld

ot

de
ld

d

de
ld

d
ac

os

ac
os

(q
4)

Tm
cs

Tm
cs

M
AT

LA
B

Fu
nc

tio
n

Sp
ac

ec
ra

ft
+

CM
G

 +
 R

W

+G
im

ba
l D

yn
am

ic
s

Pr
od

uc
t

1/
s

In
t1

7

Hs
ys

Hs
ys

Hr
w

Hr
w

Hm
cs

Hm
cs

Hc
m

g
Hc

m
g

Tc
m

g
wb

 #
2

Fl
ex

ib
ili

ty
 O

nl
y

Ex
te

rn
al

To
rq

ue

em
u

em

em
u

-K
-

2*
r2

d
 w

t

 w
rb

 w
b

flx

 ro
t a

ng
le

(d

eg
)

ex
is

 e
xi

s

 d
el

d

U
Y

2Tg 1Tw
G

im
b

Tr
qs

xd
ot

H
s wf Tc
m

g
H

c+
H

rw

wb h
de

ld
ot

de
lta qt

wr
b+

wf
le

x

wf

225

The following file "start.m" initializes both simulation models.

global m ref quad wcmg zeta bet gam nc d2r r2d
global J Jinv Ix Iy Iz Iw Jsi Jgi Joi hcmg
global Hmax Tmax Alim Jlim maxvel maxvl1 Aclim Wclim
d2r= pi/180; r2d= 180/pi;
[Af, Bf, Cf, Df] = flex_only_fem_s; % Load Flex Only Spacecr Dynamics
Ctr= [0 1 0; 1 0 0; 0 0 -1]; % Appendage Transform Matric

J= [0.17E+94, -0.16e+93, 0.11E+92; % Vehicle MOI matrix in (slug-ft^2).
 -0.16e+93, 1.30E+94, 0.31E+92;
 0.11E+92, 0.31E+92, 1.41E+94];
Jinv=inv(J); Ix=J(1,1); Iy=J(2,2); Iz=J(3,3);

% CMG data
m = [0 0; % CMG Gimbal Directions
 1 0; % Pitch Gimbal
 0 1]; % Yaw Gimbal

ref= [1 -1; % CMG Init Momentum Directions
 0 0; % Initially spin vectors are ...
 0 0]; % in roll direction back to back

for i=1:2;
 quad(:,i)=cross(m(:,i),ref(:,i)); % 3rd Orthogonal axis
end

bet= [-90,0]'; gam=[0,-180]; nc=2; % CMG mounting angles
wc=250; z= 0.98; lamb=0.4; % CMG servo bandw (rad/s), damp coeff
Jsi= 1.2; Jgi= 0.6; Joi= 0.8; % CMG Inertia Spin, Gimb, Outp axes
Kii=lamb*Jgi*wc^3; % CMG Servo Gains
Ka=(1+2*z*lamb)*Jgi*wc^2;
Kb=(2*z+lamb)*wc/Ka;

% RW data
Hm= 350; % RW Momentum 150 (ft-lb-sec)
Wm= 3500*2*pi/60; % Max RW Speed 2500*2*pi/60 (rad/sec)
Iw= Hm/Wm; % Wheel rotor inertia from 4=Iw*Wmax
Twmax=10; % Max R-Wheel Torque

% Initialization data
wb0= [0 0 0]*d2r; % Initial body rates
Qt0= [0 0 0 1]; % Initial Quaternion
h0 = [0 0 0]; % Initial CMG Momentum (body)
hrw0=[0 0 0]; % Initial React-Wheel Momentum
deldot0= [0 0]*d2r; % Initial Gimb Rates
delta0 = [0 0]*d2r; % Initial Gimb Angles
wr0=0; % Initial RW rate
ini = [wb0,Qt0,h0,hrw0,deldot0,delta0]; % State Integrator Initialization
ini2= [wb0,Qt0,wr0]; % Old Sim Initialization

Tglim=40;
Aclim=200*d2r; Wclim=60*d2r; % CMG Model Gimbal Acceler/Rate Limits
Alim= 0.022; Jlim=120*d2r; % Max Steering Accel 0.024 (rad/s^2)
maxvel=0.04; maxvl1=0.025; % ACS Veloc limits(rad/sec)
Tmax=250; % Max Torque 300
Hmax=1200; hcmg=[Hmax, Hmax]; % Max CMG Momentum, Momentum Array
wcmg= 80; zeta= 0.9; % CMG bandwidth (rad/s), damping coeff

com_dir=[0; 1; 1]; % Command Direction Unit Vector
com_dir=com_dir/sqrt(com_dir'*com_dir);

226

Simulation Results

When you combine CMGs and RW momentum exchange devices you have to take into
consideration that the system is not “equally yoked” by design. In this spacecraft the CMGs are
dedicated to control pitch and yaw (which are more important), and the reaction wheel is dedicated
to control roll (where longer conversion times are acceptable). In general the maneuvers are in pitch
and yaw. We don’t command roll. The CMGs, however, do not only produce pitch and yaw torques
but they also produce a roll torque which is a disturbance to the reaction wheel roll control system.
The wheel has to accelerate in order to take the disturbance out, but the wheel has very limited
torque and momentum capability.

The CMG generated roll disturbances are small when the gimbal angles are small. When the
spacecraft performs small angle maneuvers around Nadir the CMG gimbal angles are small and the
induced roll torque is also small, so the RW control system easily compensates against the roll
CMG torques. But when the maneuvers become larger than 40º the RW control system sometimes
has difficulty overcoming the CMG roll torque and the maneuver may fail. Let us remind you that
this is a low budget design, in comparison to the previous 4 SGCMG design, because the spacecraft
pointing requirement is not greater than 40º from Nadir (earth center) direction. The CMG/RW
momentum control system combination will perform better in some maneuvers than others,
depending on how big is the induced roll disturbance by the CMGs. We will present and discuss
simulation results obtained from five separate maneuvers. The roll responses may be a little sloppy
most of the time but overall the pitch and yaw responses are great. The results obtained include
vehicle flexibility as described in the simulation models.

227

50 (deg) +Pitch and -Yaw Combination Maneuver: [0 1 -1]

Let us begin with an easy maneuver. Maneuvers in diagonal pitch/ yaw directions perform great
because the induced roll torques from the two SGCMGs cancel each other out. In the absence of roll
disturbances the pitch and yaw CMG control system can perform ideal eigenaxis rotations, as
shown below, for maneuvers which are even greater than 40º. There is some RW activity due to
cross-coupling in roll because the system does not have perfect symmetry. Notice that, although the
gimbal angles reach almost 40 (deg) the CMG gimbal torques are less than 34 (ft-lb) because the
RW momentum is small and it does not create big (ω x h) torques against the gimbals.

228

229

230

 40 (deg) +Pitch and +Yaw Maneuver indirection : [0, 1, 1]

This one is another well behaved pitch/yaw 40º diagonal maneuver very similar to the previous one.
It performs a perfect eigenaxis rotation with very little coupling in roll. Notice how the pitch/yaw
error drops significantly when the integrators in the PID are turned on and the error continues to
decay further. The roll error decays at a slower pace. Similar to the previous case, the RW rate
reaches only 250 (rpm) and the CMG gimbal torques approx. 30 (ft-lb). The MCS control torque
consists of both: CMG and RW torques. In this case it is mainly due to the CMGs. Notice also that,
the body rates during phase-plane control are equal 1.7 º/sec in both pitch and yaw. The CMG
momentum in pitch and yaw are negative since they are exchanging momentum with the spacecraft.
Their sizes are not equal because the pitch and yaw moments of inertia are different. Notice also
that, the plots should be labeled pitch/yaw instead of yaw.

231

232

233

40 (deg) Yaw Maneuver

The following maneuver does not look as great as the previous two although it meets the
requirements 100%. The vehicle is commanded to perform a 40º rotation in yaw. It executes the
rotation while it induces a big transient in roll, as shown in the phase-plane. The yaw maneuver
requires a pitch CMG gimbal rate action and an 80 (ft-lb) pitch gimbal torque. The CMG induces a
significant amount of roll disturbance that the RW tries to compensate against it but it saturates due
to its limited torque. This causes a RW torque chattering that couples slightly in the yaw gimbal rate
and the pitch CMG torque.

234

235

236

180 (deg) Roll Maneuver

Although the spacecraft typically maintains zero roll attitude while it is maneuvering in pitch and
yaw, it still has the capability to perform roll maneuvers when needed. In the following case the
spacecraft uses mainly the reaction wheel to rotate 180º about the line-of-sight (roll) axis. The
command direction vector is [1, 0, 0] and the rotation angle is 180º. The eigenaxis plot below shows
that the rotation is only in roll without any coupling in the other two axes. The phase-plane shows
that the spacecraft roll rate reaches a max steady value of 1.42 (deg/sec) and maintains that rate
during most of the phase-plane portion of the maneuver. At the same time the RW reaches a max
rate of 430 (rpm). The integrators are turned on when the roll error drops below 1º and the PID
controller helps to further attenuate the attitude error. The maneuver causes a small transient due to
cross coupling at the CMG gimbal rates that eventually dies down.

237

238

239

40 (deg) Maneuver in direction: [0, 0.5 -1]

This maneuver represents one of the bad cases, although it still meets the pointing requirement. It is
a pitch and mostly -yaw combination maneuver that creates a significant amount of coupling in the
roll axis, and since the roll axis is slow by design it takes longer to converge. The CMGs which are
primarily used in pitch and yaw generate in this case a significant amount of roll disturbance (see
how the vehicle roll rate deviates from the commanded rate). This makes the reaction wheel torque
to saturate resulting to a huge roll error and it takes longer to converge. The pitch and yaw errors,
however, which are of more importance than roll, are attenuated pretty significantly, while the roll
error is also attenuated but at a slower rate. The rate of error decay improves when the ACS
switches to PID mode.

240

241

242

Linear Stability Analysis

The Simulink model "Open_Loop_Flex.mdl", shown in Figure (9), is used for linear stability
analysis. It is similar to the simulation model "MaxEn_RW_2SGCMG_Flex.mdl" but it is used for
frequency response analysis and not simulations. It allows the loops to be opened at the spacecraft
input torques. The loop is either opened at the RW torque command for frequency response
calculation or at one of the two CMG gimbal torque inputs, while the other loops remain closed.
Figure (3.6.11) below shows the loop opened at the CMG #2 yaw gimbal. The non-linearities have
been taken out and this system represents the steady-state PID mode of operation. The attitude
control system function was replaced with a linear ACS version using Matlab function
"ACS_Lin.m" instead of "MaxEn_ACS.m". Also the steering inner loop controller was replaced with
a linearized version Matlab function " Steering_Lin.m" instead of "Steering_Lin.m". The ACS is
commanded at zero quaternion attitude. The Matlab file "frequ.m" is used to calculate the frequency
response of the open-loop model in order to measure the phase and gain margins, as shown in the
Bode and Nichols plots, Figures (3.6.12 to 14).

1
out

[0 0 0 1]

quat comd

wb

wcm

wr

delt

Twc

deldot

Steering &
Rate Control

Tw

Tc

wf

quat

wr

delta

deldot

Spacecraft
Dynamics

emu
deldc

deldot
Tc

CMG Gimbal Cont.

Qf b

Qcom
wc

Attitude
Controller

-K

-1

1
in

gimbal rates

gimbal angles

Re Wheel rate

attitude quaternion

body rate

Tcmg

Figure 3.6.11 Simulink model " Open_Loop_Flex.mdl " used for open-loop frequency domain analysis

% Linear Analysis script freq.m
[Ao,Bo,Co,Do]=linmod('Open_Loop_Flex'); % Open-Loop Analysis Model
syso=SS(Ao,Bo,Co,Do); % for Stability analysis
w=logspace(-2,4,20000);
figure(2); Bode(syso,w); grid on
figure(3); Nichols(syso,w)

243

Figure 3.6.12 Frequency response with the loop opened at the pitch CMG gimbal showing stability
margins

244

Figure 3.6.13 Frequency response with the loop opened at the yaw CMG gimbal showing stability
margins

245

Figure 3.6.14 Frequency response with the loop opened at the reaction wheel torque showing stability
margins, other loops are closed, showing that roll bandwidth is much smaller than pitch and yaw.

246

Let us now repeat the previous spacecraft analysis using the Flixan Flight Vehicle Modeling
program to model the flexible spacecraft with two SG-CMGs and one Reaction Wheel. Our purpose
now is to demonstrate that we can obtain the same results using state-space models derived from
Flixan and to bypass the Matlab dynamic models created in folder: “(d) Flex SC with
2SGCMG+RW ACS”. This time we will skip the detailed spacecraft data creation process and use
instead the existing input data files and run them using Flixan program in batch mode to create the
spacecraft state-space models. The data for this analysis is in folder: “C:\Flixan\Examples\Flex
Agile Spacecraft with SGCMG & RCS\CMG Control\(f) 2SGCMG 1RW using FVP". The input data
file is "FlxSc_2CMG_RW.Inp" the systems file is “FlxSc_2CMG_RW.Qdr". The input data file
contains data for the spacecraft with 2 SGCMGs for pitch and yaw control and one RW for roll
control. There is a rigid body model and a flex model. It contains also a set of modal data consisting
of 40 selected flex modes that were extracted from the modal data files “FlexSc_FEM.Mod" and
“FlexSc_FEM.Nod" used in previous analysis. We will skip the lengthy mode selection process
because it is similar to the mode selection in Section 3.5 with the addition of the reaction wheel
which is located in the same node as the CMGs. The input data file also contains some data for the
Flixan model reduction utility to eliminate some unused states and outputs. The Matlab analysis is
performed in the sub-directory "Matan".

Creating the Systems in Batch Mode

On the top of the input data file "FlxSc_2CMG_RW.Inp" there is a batch data-set “Batch for
Spacecraft with 2 SG CMG & 1 RW”. It is a short script of commands that speeds up the generation
of the spacecraft systems. To execute the batch, you must first start the Flixan program, go to folder
“…Flex Agile Spacecraft with SGCMG & RCS\CMG Control\(f) 2SGCMG 1RW using FVP”. Go to
“Edit”, “Manage Input Files”, and then “Process/ Edit Input Data”.

When the following dialog appears, click "Continue".

247

From the following dialog select the input file “FlxSc_2CMG_RW.Inp” and press the “Select Input
File” button. The menu on the right shows all the data-sets which are saved inside the input file.
Select the top batch set: “Batch for Spacecraft with 2 SG CMG & 1 RW”, and click on “Execute/
View Input Data”.

The Flixan program batch processor uses various utilities to process all the data-sets called by the
batch and saves the spacecraft systems in file “FlxSc_2CMG_RW.Qdr”. It creates also two state-
space system m-files for the spacecraft with the two CMGs and a RW that can be loaded into
Matlab: a rigid-body model in file "sc_cmg_rw_rb.m" and a flex spacecraft model
"sc_cmg_rw_flex.m". Click “Exit” to end the Flixan program. The two files are transferred to the
subfolder "Matan" to be loaded into Matlab for further analysis.

248

The Simulation Model

The simulation model used in this analysis is "PID_RW_2SGCMG_FVP.mdl", shown in Figure
(3.7.1). It is similar to the non-linear model shown in the previous section but is missing all the
non-linearities in the attitude control system and in the spacecraft dynamics. It uses Euler angles for
attitude instead of quaternion. The integrators in the PID are "on". It is not intended for large angle
maneuvers but for analyzing stability and performance at nominal operating conditions, such as, in
the initial condition when the gimbal angles are at zero and the CMG array momentum is zero.

[1 -1 1]*0.2

attitude
cmd (deg)

wb

wcm

wr

delt

Twc

deldot

Steering &
Rate Control

Tw

Tc

wf

atti

wr

delta

deldot

Spacecraft
Dynamics1

atti

cmd
wer

PI Control

deldc

deldot
Tg

CMG Gimbal Cont.

gimbal rates

gimbal angles

Re Wheel rate

body rate

React-Wheel Torque

Tgimb

Figure 3.7.1 Linear Simulation Model in file "PID_RW_2SGCMG_FVP.mdl"

The spacecraft plus CMG dynamics (green block) contains the state-space system from file
"sc_cmg_rw_flex.m", title: “Flexible Spacecraft with 2 SG-CMGs and a RW (modif)”, which was
created by Flixan FVP. The system is loaded into Matlab workspace by the initialization file
"start.m". It implements the linearized equations of a spacecraft with SGCMG and RW described in
Section (3.2). The spacecraft block is shown in detail in Figure (3.7.2). The inputs are: pitch and
yaw CMG gimbal torques, roll RW torque, and disturbance (not used). The gimbal torques come
from the gimbal servo system that controls the CMG gimbal rates. The gimbal servo system and the
steering were described earlier. The spacecraft outputs are: attitude, rates, and accelerations at
different locations, including flexibility. There is also gimbal rates, gimbal angles, reaction wheel
rate, and CMG array momentum in body axis. The initialization file "start.m" is also initializing the
gimbal control system gains, the mass properties, the CMG orientation angles, gimbal directions,
and momentum reference directions which are used by the steering logic.

249

Figure 3.7.2 Spacecraft Dynamics from State-Space System: "sc_cmg_rw_flex.m "

250

The attitude controller is shown in Figure 3.7.3. It has been reduced to a PID by removing the
phase-plane logic, plus rate and energy limiting non-linearities, suitable for small angles steady-
state operations. This is when "kay" switches from one to zero at the completion of the phase-plane
mode of operation. The rate feedback loop of the PID controller is implemented in the steering
block. There is a scaling gain of 0.5 included to accommodate the previously used PI gains which
were designed based on a quaternion error feedback. There is a factor of two difference between
attitude error in (rad) and quaternion error.

1
wer

-K-

kp

ki

ki

-K-

d2r

1
s

Int1

-K-

2

2
cmd

1
atti

Figure 3.7.3 PI Attitude Control System

Simulation Results

The following results were obtained from the simulation model by commanding 0.2 degree attitude
rotation in all 3 axes 0.2*[1 -1 1]. This model is not intended to be used for large angle maneuvers
because it is missing the non-linear controls which limit rates and torques and it will generate
unrealistic amounts of rates and torques. It operates entirely in PID mode and it is intended for
evaluating the spacecraft stability and performance under small angles excitation. The results show
a step response time of about 1.5 seconds in pitch and yaw. The roll axis is slower by design as it
was already discussed. There is also more structural flexibility in roll (blue). The reaction wheel
accelerates to provide the torque required to rotate the spacecraft in roll. The RW torque is limited
to 10 (ft-lb). The attitude error in roll is affected by flexibility but it eventually decays due to modal
damping. The CMG gimbals respond to the pitch and yaw commands and the CMG momentum is
strictly in pitch and yaw. There is no CMG momentum used for roll control because roll is
controlled by the reaction wheel.

251

Figure 3.7.3(a) Attitude error in roll (blue) and in pitch/yaw combined (red)

252

Figure 3.7.3(b) Step Response is 1.5 seconds in pitch and yaw. The roll loop is slower and it is more
vulnerable to flexibility. The RW rate responds to the roll attitude command. The RW torque is
limited to 10 (ft-lb)

253

Figure 3.7.3(c) CMG Gimbal angles and rates due to the maneuver. The CMG momentum was used
only in pitch and yaw, not in roll. The roll axis is controlled by the RW.

254

Stability Analysis

The Simulink model "Open_Loop_FVP.mdl" in Figure (3.7.4) is used for open-loop frequency
response analysis and it consists of the same subsystems as in Figure (3.7.1). The control loops are
broken for frequency response analysis at two places: (a) the reaction wheel torque output for roll,
and (b) at the pitch and yaw CMG gimbal torques. Only one axis is cut at a time while the other two
remain closed. In the example configuration shown below the RW torque loop is opened but the two
CMG gimbal torques are closed. The Matlab file “freq.m” linearizes this model and calculates the
frequency response between the input and the output and plots the Bode and the Nichols plots. The
stability analysis plots are shown in Figure (3.7.5). Stability is measured by the phase and gain
margins from the red cross.

1
outwb

wcm

wr

delt

Twc

deldot

Steering &
Rate Control

Tw

Tc

wf

atti

wr

delta

deldot

Spacecraft
Dynamics1

ater wer

PI Control

emu
deldc

deldot
Tg

CMG Gimbal Cont.

-K-
-1

1
in

gimbal rates

gimbal angles

Re Wheel rate

body rate

Tgimb

Figure 3.7.4 Simulink Model "Open_Loop_FVP.mdl" Used for Frequency Response Analysis

The frequency response and stability analysis results shown in Figures 3.7.5 are identical to the
frequency response results obtained in the previous section in Figures 3.6.12, concluding, that the
state-space models generated by the Flixan program are identical to the detailed dynamic models
presented in the Section 3.6.

255

Figure 3.7.5(a) Open-Loop Frequency Response and Stability Analysis with loop opened at the RW
Torque

256

257

Figure 3.7.5(c) Open-Loop Frequency Response and Stability Analysis with loop opened at the Yaw
CMG Gimbal Torque

