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Introduction 

In this example we will analyze a guided intercept between two space vehicles: an interceptor which 
is a kinetic vehicle (KV) and a target that may be a meteorite heading towards the earth, space debris, 
or an enemy missile. A typical space intercept is divided into three phases: 

a) The boost phase where the KV is attached to an accelerating booster that points its direction 
towards the target and acquires sufficient kinetic energy to destroy the target by impact. 

b) The Mid-Course guidance phase that attempts to align the direction of the KV in a collision 
course with the target by predicting the target's future trajectory. 

c) In this example will analyze the final phase guidance, the End-Game which begins when the 
interceptor is sufficiently close to acquire the target position in its field of view and it ends 
when the KV impacts and destroys the target. 
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The end-game is a dynamic engagement using closed-loop guidance to improve impact precision and 
probability, especially when the target is randomly accelerating in order to avoid getting hit. The KV is 
already in a collision course with the target and it is no longer accelerating. The target, however, may 
be accelerating towards and perpendicular to the KV direction. The KV uses an optical seeker to track 
the target and its line-of-sight (LOS) is always pointing towards the target. It has an Attitude Control 
System (ACS) to maneuver its attitude, tracking the target at the center of the seeker's field of view 
and aligning the x-axis with the target, as shown in Figure 1. If the target is not maneuvering and if 
the mid-course boost was executed perfectly, the target would remain in the center of the seeker's 
field of view all the way to impact. The KV has four 5 (lb) thrusters for attitude control located in the 
back. It also has four 20 (lb) divert thrusters for translation control which are firing through the CG to 
prevent rotations. Since the KV is already in a collision course with the target and it is no longer 
accelerating towards the target, its translational motion is controlled only in two directions 
perpendicular to the LOS, as it attempts to take out small translational errors that have accumulated 
due to target unexpected acceleration and noise. If the seeker detects an error or the target moves 
perpendicular to the LOS, the guidance will fire divert thrusters to produce acceleration that will zero 
the error in the corresponding direction. It is assumed that the approximate relative position, 
velocity, and acceleration of the target are calculated from the seeker azimuth and elevation 
measurements, and from the target distance which is estimated from navigation and used in the End-
Game algorithm. Figure 1 shows the locations of the jets, the input numbers in the dynamic model 
and the corresponding node numbers in the structural model.  

 

Figure 1 KV Spacecraft and the Location of RCS Thrusters 
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1. Dynamic Models 

In this Section we will develop several dynamic models that describe the rotational and translational 
motion of the KV spacecraft in response to divert and attitude control thrusters. The spacecraft 
models include structural flexibility derived from a finite elements model. They are implemented 
using Flixan programs and will be used to design the control laws, simulate, and analyze the system 
stability. We will use the spacecraft models to design an attitude control system that uses the ACS 
thrusters to point the spacecraft LOS towards the target and tracks it by rotating the KV. We will also 
design a linear acceleration control system that controls the spacecraft acceleration by pulsing the 
divert thrusters. 

An additional dynamic model will be presented in Section 4 for designing an optimal control law that 
will guide the KV to the target. It describes the relative translational motion of the two spacecraft in a 
direction (y or z) perpendicular to the LOS. It is initialized from the state of the target relative to the 
KV when the seeker acquires the target. It is used by Flixan to derive the state-feedback gains and the 
Kalman-Filter, and also in Matlab simulations. The azimuth and elevation LOS errors of the target 
relative to the KV are measured by the seeker from its initial local inertial attitude, when the target is 
first acquired. They are translated into relative target position (Sry, Srz) perpendicular to the LOS, 
which command the translational control system to fire the corresponding divert thrusters to zero 
the relative position at the estimated impact time.  

Two guidance laws will be analyzed using this model: Proportional Navigation (PN), and Optimal 
Control (OC). Estimates of relative position, velocity and acceleration are used to calculate the KV 
acceleration commands in order to take out the position errors perpendicular to the LOS at impact. 
The continuous acceleration commands calculated from guidance are converted into jet pulses that 
produce the demanded average acceleration. The two algorithms will finally be combined together 
for the purpose of taking advantage of their properties in different flight conditions and designing a 
system that is fuel efficient and robust to range and to uncertainties of target motion. 

The data files for this example are in the directory “Flixan\Examples\Interceptor Spacecraft”. The 
spacecraft model was derived from a Nastran finite elements model. The modal data were extracted 
and saved in file “Interceptor.Mod” that contains a total of 140 structural modes at 19 vehicle 
locations. The first six are rigid body modes used for modeling the 3 rigid translations and 3 rotations 
of the spacecraft. The nodes file: “Interceptor.Nod” includes a list of the nodes and it is used as a 
look-up table by the mode selection program to identify structural nodes in the modal data file that 
correspond to spacecraft locations. The maneuvering spacecraft does not have any rotating solar 
arrays or gimbaling payloads. Therefore, it does not require a coupling coefficients data file (*.hpr). 
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We used Flixan to create two dynamic models for this spacecraft that include structural flexibility. The 
system “rigbod_mod.m” was created using the flexible spacecraft modeling program, and the system 
“kkv_acs.m” that was generated from the flight vehicle modeling program. They both use 8 thrust 
varying inputs: 4 divert thrusters to perform translation maneuvers along the y and z axes 
respectively and 4 ACS thrusters for 3 axes attitude control. The outputs consist of: two 
accelerometers along the y and z axes, and 3 rate gyros which measure body rates in roll, pitch, and 
yaw axes. 

1.1 Flexible Spacecraft Model 

The input dataset for generating the flexible spacecraft system is already prepared and it is saved in 
file “Interceptor.inp”. It is processed by the Flixan “Flexible Spacecraft Modeling” program to create 
the spacecraft state-space system from selected Nastran modes. Its title is “Interceptor Spacecraft, 6-
DOF, from Rigid-Body/ Flex Modes”. This dataset consists of three parts. The first part defines the 
input forces, node numbers, and force directions. The second part describes the types and location of 
the sensors which are: 2 accelerometers along y and z axes, and 3 rate gyros measuring roll, pitch and 
yaw. The third part of the dataset consists of selected structural modes to be included in the model. 
42 modes were selected in this example, including the first 6 rigid-body modes. The modes were 
selected from the modal data file by a mode selection process that will be described in Section 1.2.  

For translation control in the ±y and ±z KV directions the spacecraft uses four divert thrusters of 20 
(lb) each that fire through the GC, inputs: 1 to 4, see Figure 1a. For attitude control the system uses 
four 5 (lb) reaction control jets (inputs: 5 to 8). They are tilted at 45 degrees with respect to the y and 
z axes to provide attitude control in all 3 directions, see Figure 1b. The Nastran model is already 
scaled to include the thruster forces, so the jet forces must not exceed ±1. There are no torque 
actuators in this spacecraft. The spacecraft state-space model is produced by processing the input 
dataset using the flexible spacecraft modeling program. Its title is also “Interceptor Spacecraft, 6-DOF, 
from Rigid-Body/ Flex Modes”. Its outputs include the two accelerometers in the y and z directions, 
and the 3 rate-gyros measuring roll, pitch, and yaw rates. It is saved in file “Interceptor.Qdr” and it 
will be used in the upcoming simulations.  
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Input dataset in file “Interceptor.Inp” that implements the interceptor spacecraft dynamics including 
flexibility. Only the first rigid-body mode is shown. It is processed by the Flixan “Flexible Spacecraft 
Modeling” program to produce the system “Interceptor Spacecraft, 6-DOF, from Rigid-Body/ Flex 
Modes” in file “Interceptor.Qdr”. 
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To process the already created flex spacecraft dataset, start Flixan, select the project directory, and 
from the Flixan main menu go to “Program Functions”, “Flight Vehicle/ Spacecraft Modeling Tools”, 
and select the “Flex Spacecraft (Modal Data)” program. From the next filename selection menu select 
the input file name “interceptor.Inp”, and the systems file name “interceptor.Qdr” where the 
spacecraft system will be saved, and click on “Process Files”. The next menu shows the Flexible 
Spacecraft datasets which are already saved in the input file. There is only one. Select it and click on 
“Run Input Set”. Flixan will process the dataset and save the spacecraft system in file 
“interceptor.Qdr”. 
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1.2 Creating the Flex Spacecraft Input Dataset 

We will now show how to create a new spacecraft dataset from scratch, including flexibility. Start the 
Flixan program, select the project directory, and from the Flixan main menu go to “Program 
Functions”, “Flight Vehicle/ Spacecraft Modeling Tools”, and select the “Flex Spacecraft (Modal Data)” 
program, as before. From the next filename selection menu select the input file name 
“interceptor.Inp”, and the systems file name “interceptor.Qdr” where the spacecraft data and system 
will be saved, and click on “Create New Input Set”. 

 

In the next dialog you must define the new spacecraft system by entering its title, some comments at 
the bottom that describe the spacecraft characteristics, you must define the number of excitation 
forces, torques, and the number of translations and rotational sensors to be included in the 
spacecraft model. You must also select the modal data file that includes the finite element modes and 
the nodes file. The mode shapes and frequencies at the selected node points will be read from the 
modal data file and be processed by the program. 

 

The next step is to define the 8 force excitation points specified with their corresponding force 
directions using the node selection menus. The node menu displays a list of nodes from the 
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nodes file “Interceptor.Nod” and the user selects a node for each excitation force and enters its 
direction vector. In this case our first input is a force in the –Y direction which is applied at the 
right divert thruster. Similarly our second input is a force in the –Z direction which is applied at 
the bottom divert thruster. Click on “OK” to continue. 
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We also use the nodes menu to define the four ACS throttle inputs that apply forces at the four 
ACS thrusters in skewed directions, as shown in Figure 1b. Click on “OK” to continue. 
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The next step is to define the two translational accelerometer outputs. We select node #9 which is 
the sensors location, define the type of sensor (accelerometer), and the direction of measurement 
along Y and Z respectively, and click on “Select”. 
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We must also define the 3 rotational outputs that correspond to the rate gyros. We select node #9 
which is the sensors location, define the type of sensor (rotational velocity), and the sensor direction: 
roll, pitch and yaw respectively, and click on “Select”. 
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Now the spacecraft configuration has been defined in terms of inputs and outputs, the next step is to 
compare and select the modes. The mode selection program allows the user to use any structural 
points to calculate the modal strength in between, points which are not necessarily actuators and 
sensors. This is because the user may wish to analyze modal excitation sensitivity between different 
locations and force directions. 

From the following menu we must define some mode selection parameters. The range of modes to 
be compared (1 to 140). We begin from mode 1 because we want to include the first 6 modes which 
are rigid-body modes. Remember, in the Flex Spacecraft modeling program the rigid-body dynamics 
are not calculated from mass properties but they are implemented like the flex modes, imported 
from the finite elements model. In this case we define 2 force excitation points, 2 translational sensor 
points, and 2 rotational sensor points. They will be used only for mode comparison purposes. The 
locations of the dynamic model actuators and sensors have already been defined. Choose the 
graphical approach to manually select the modes using the bar chart and click “OK”. We will not 
rescale the modal data this time because the FEM units and directions are acceptable. 
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From the following menu select nodes for the two force excitation points and the corresponding 
force directions along +Y and +Z respectively 
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From the following menu select node #9 for the two translational sensor points and the 
corresponding directions along +Y and +Z respectively. 

 

From the following menu select node #9 for the two rotational sensor points measuring in the pitch 
and yaw directions respectively. 
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From the above chart the user can select a large number of dominant modes by using the mouse. A 
mode changes color from red to green when it is selected. Modes: 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 
16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 34, etc. were included in the flexible spacecraft 
model. The first 6 modes are rigid-body modes. The flex mode selection was based on the modal 
strength that is calculated between the thrusters and the sensors specified. Click on the “Enter” key, 
and the flexible spacecraft description dataset with the selected modal data will be saved in file 
“Interceptor.inp”. Its title is “Interceptor Spacecraft, 6-DOF, from Rigid-Body/ Flex Modes” and the 
spacecraft description is inserted below the title. 
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1.3 Spacecraft Model Created by the Flight Vehicle Modeling Program 

The input file “Interceptor.Inp” also contains a flight vehicle dataset, shown below, that generates the 
same flex spacecraft model using the flight vehicle modeling program. Its title is “Kinetic Interceptor 
Model for ACS Control”. The rigid-body dynamics are implemented from the spacecraft mass 
properties and it is combined with a set of selected structural modes that obviously do not include 
the rigid-body modes. The previously selected modes are saved as a separate dataset in the same 
input file under the title: “Kinetic Interceptor Vehicle, Divert Flex Modes”. This system also includes 
the four divert thrusters and the four ACS thrusters implemented as throttling engines where the 
throttle varies between zero and ±1, since the maximum thrust is included in the dynamics. The 
system outputs are also 3 rate-gyros (roll, pitch, yaw), and two accelerometers along y and z. This 
state-space system is also saved in file “Interceptor.Qdr” to be used for control analysis. The title of 
the selected modes is included at the bottom of the vehicle dataset, below the number of modes, in 
order to be processed with the vehicle data. 
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1.4 Batch Processing 

There is a batch dataset located at the top of the input data 
file “Interceptor.Inp” that can be used to process the data 
faster and to create the spacecraft systems and matrices for 
Matlab analysis. Its title is: “Batch for preparing models for 
the Flexible Interceptor Spacecraft”. To run it, select the 
project directory, go to “File Management”, “Managing Input 
Files”, and select “Edit/ Process Input Files”, as shown below. 
From the input file manager utility dialog select the input file 
and click on “Process Input Data”. 
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1.4 Dynamic Model Comparison 

Figure 1.4.1 shows the two Flixan spacecraft systems in parallel. They are implemented in Simulink 
file “Model_Compare.Mdl” in subdirectory “Examples\Interceptor Spacecraft\2 Proportional-
Navigation Sim”. The top one is generated from the flexible spacecraft modeling program and it 
includes the system “Interceptor Spacecraft, 6-DOF, from Rigid-Body/ Flex Modes” which is in file 
“rigbod_mod.m”, as described in Section 1.1. It consists of both: rigid and flex modes that were 
created from a finite elements program. The system at the bottom is generated from the flight 
vehicle modeling program and includes the system “Kinetic Interceptor Model for ACS Control” that 
was saved in file “kkv_acs.m”. The inputs to the two models are scaled so an input of ±1 corresponds 
to maximum thrust which is ±18 (lb) for divert and ±5 (lb) for the ACS thrusters. The acceleration 
output of the top model is converted from (in/sec2) to (feet/sec2). The two models are very similar 
although not exact because the top system includes more details in the finite-elements 
implementation. This example illustrates the multiplicity of methods that can be used to model flight 
vehicles or spacecraft using the Flixan program. 

 

Figure 1.4.1 Comparing the Two Flixan Generated Dynamic Models of the Interceptor Spacecraft 
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2. Attitude Control System 

Figure 2.1 shows the Attitude Control System which is a PD controller. The rate gyros receive body 
rates (inputs 1:3) from the spacecraft model. They are integrated by the IMU to calculate attitude 
outputs (4:6). Inputs (4:6) are the attitude commands in roll, pitch and yaw. Outputs (1:3) are the 
attitude errors. The ACS was implemented using the Flixan transfer function utility program. Its title is 
“IMU/ CONTROLLER”, and it was saved in file “control.m” for Matlab analysis. 

 

Figure 2.1 Spacecraft Attitude Control System 

2.1 Mixing Logic Matrices 

The systems file “Interceptor.Qdr” includes two mixing logic matrices for the four divert thrusters and 
the four ACS thrusters. The matrix Tmix converts the three ACS (roll, pitch, and yaw) demands to 
throttle variations for the four ACS thrusters. The matrix Kdiv converts the acceleration demands to 
throttle variations for the four divert thrusters. The matrices are saved in Matlab format and loaded 
into the workspace.  
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2.2 ACS Stability Analysis 

The attitude control system includes a dead-band non-linearity which controls the on-off switching of 
the ACS jets. Therefore, the Describing Function (DF) method will be used in the frequency domain to 
analyze the possibility of limit-cycling, measure the phase and gain stability margins and check if 
additional filter compensation may be needed to eliminate limit cycles and to improve the system 
performance. Limit cycling is obviously undesirable because it uses a lot of fuel. The DF of the Dead-
Band non-linearity is shown in equation 2.1. It varies as a function of the input error amplitude e, and 
its maximum value is Nmax is used to determine the margin  
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Where: F is the jet thrust which is normalized to unity in this case because it is included in the 
dynamic model. em is the size of the dead-band (0.004 radians). The undesirable condition of limit 
cycling occurs when the linear part of the ACS loop G(jω) intersects the inverse of the DF locus 
{1/N(e)}, that is when: 
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         (2.2) 
If we plot the inverse of the DF on a Nichol's chart 20 log{-1/ N(e)}, the intersection of the DF locus 
with the frequency response of the continuous system G(jω) will indicate presence of a limit cycle. 
The lowest point of the -1/N(e) locus is the critical point for measuring stability along the -180⁰ axis 
because it is closest to the G(jω) locus. However, it is easier to scale the G(jω) locus by multiplying it 
with Nmax and plot it on a regular Nichols, where + in this case represents the minimum of the -1/ N(e) 
locus which is the critical point. 

 
Figure 2.2 Limit-Cycle Analysis Using the Describing Function Method 



23 
 

 

Figure 2.3 Open-Loop Model “Open_Loop.mdl” for ACS Stability Analysis Using the Describing Function Method 

The rate feedback gain Kr in the ACS block diagram in Figure 2.1 determines the amount of phase-
lead and the attenuation of the G(jω) locus. It can be used to adjust the gain and phase margins 
relative to the critical point +. The open-loop model “Open_Loop.mdl” in subdirectory “Interceptor 
Spacecraft\1 ACS Stability Analysis” is used to analyze stability in the frequency domain. It includes 
the Flixan generated flex spacecraft model “kkv_acs.m”. The file “start.m” loads the models and 
matrices, and the file “freq.m” calculates the Nichols plots, as shown below in Figure 2.4. 
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Figure 2.4 Nichols Plots Showing the ACS Stability Margins in Roll, Pitch and Yaw Axes 
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3. Linear Acceleration Control System 

The End-Game control law obviously assumes that the interceptor acceleration response is analog 
and proportional to the continuous command from guidance. Continuous acceleration, however, 
cannot be obtained from the on/off thrusters and for the algorithm to be successful in intercepting 
the target it is necessary that the KV is able to respond efficiently to the acceleration commands. A 
control system is included, therefore, that regulates the average acceleration of the interceptor and 
makes it equal to the commanded acceleration. 

 

Figure 3.1 Linear Acceleration Control System 

The linear acceleration control system 
is shown in Figure 3.1. It consists of a 
PI integrator that integrates the 
acceleration error signal (Acom - Ak) and 
feeds it to a dead-band non-linearity. 
The matrix Kdiv converts the two 
acceleration demands (along y and z) 
to throttle demands. The PD output 
regulates the switching of divert 
thrusters that accelerate the KV in the 
proper direction. It acts like a pulse 
width modulator and controls the 
spacecraft acceleration in the y and z 
directions by regulating the thruster 
firing. The accelerometer output is 
filtered to reduce flex mode excitation. 
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The Simulink model shown in Figure 3.1, in file “Accel_Control.mdl”, is located in subdirectory 
“Interceptor Spacecraft\2 Proportional-Navigation Sim” and it is used to analyze the acceleration 
control system. In this example the spacecraft is commanded to accelerate ±10 (feet/sec2) in the y 
and z directions and it responds with a small delay. The noise is due to flexibility which is also excited 
by the thrusters firing. The accelerometer signal is filtered to minimize flex mode sensing and 
excitation. The size of the dead-band determines the pulsing frequency. A narrow band will generate 
more frequent pulsing and it will regulate the average acceleration better than a wider one. It is 
important for the system to respond fast to the acceleration commands especially during the final 
phase of the End-Game in order to drive the relative state vector to zero. However, when the dead-
band is too narrow it causes undesirable limit cycles which is fuel inefficient.  

4. End-Game Dynamic Model 

The dynamic model in this Section describes the relative motion between the interceptor spacecraft 
and the target. The relative motion of the two spacecraft can be described by two sets of equations: 
one that describes the relative motion along the x-direction which is along the main velocity direction 
and the LOS, and another set of equations that describe the motion perpendicular to the LOS. The 
motion along the LOS which is along the line joining the two spacecraft is uncontrollable because the 
interceptor has no thrust in the x-direction and the relative motion equation is only used to calculate 
the time to impact (tgo). The relative motion perpendicular to the LOS along the y and z directions is 
controlled by the interceptor’s divert thrusters and it is identical in both perpendicular directions. 

The time-to-go calculation tgo for an accelerating target in equation 4.1 is calculated from the 
estimated acceleration Ax, relative velocity Vx, and the distance to target R. If the target is not 
accelerating the time-to-go simplifies to: t R Vgo x=  

t
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x
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        (4.1) 

Equation 4.2 describes the relative spacecraft motion perpendicular to the LOS (either y or z 
directions). It is controlled by the divert thrusters that provide the KV acceleration AI. It describes the 
motion in the local inertial frame which is defined by the position of the interceptor at the 
initialization time, when it first locates the target. 
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The state vector consists of four states: 
Sr is the relative vehicle position (target – interceptor) 
Vr is the relative vehicle velocity (target – interceptor) 
AT is the target acceleration normal to the LOS 
AI is the interceptor acceleration perpendicular to the LOS 
 
The two inputs are: 
AIcom Interceptor Acceleration Command perpendicular to the LOS 
ATcom Target Acceleration Command perpendicular to the LOS 
 
The dynamic model in equation 4.2 includes the maneuverability of the two spacecraft perpendicular 
to the LOS and introduces it in the control design. In addition to relative position and velocity it 
includes the target and interceptor bandwidths described by first order lags of frequencies WT and WI 
respectively, where: WT=5 (rad/sec) and WI=100 (rad/sec). Naturally the interceptor must have a 
broader bandwidth than the target because it is smaller in size. Sr and Vr are the target’s position and 
velocity relative to the kill vehicle perpendicular to the LOS. 

The control guidance of the interceptor must sense the relative motion of the target along the ±Y and 
±Z KV axes using the optical sensor and apply the proper acceleration command to the thrusters that 
will null-out the relative position and will intercept the incoming target at the estimated impact time. 
The state-feedback gains are not constant but they increase as the time-to-go before impact 
decreases, which make the interceptor respond faster to errors as the distance gets shorter. The 
relative target to interceptor position is measured by the on-board seeker. The seeker makes azimuth 
and elevation measurements relative to the line-of-sight (LOS). The measurements are: 
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Where: (Srx, Sry, Srz) are the relative target to interceptor positions in the KV body coordinate frame 
and (vaz, vel) are zero mean white measurement noise. The target's inertial acceleration is estimated 
and it is transformed in the KV body frame using the transformation matrix CI

B. The Euler angles φ(t), 
θ(t), and ψ(t) are obtained from the KV rotations relative to the local inertial frame. The local inertial 
frame is the initial attitude of the KV when the End-Game begins at t=0. That is, when 
φ(t)=θ(t)=ψ(t)=0. The inertia to body transformation matrix is 

C
t t

t t
t t

I
B =

−
−

−

















1
1

1

ψ θ
ψ φ
θ φ

( ) ( )
( ) ( )

( ) ( )
       (4.4) 

  



28 
 

The Kalman-Filter estimates the state vector from the position and accelerometer seeker 
measurements. The estimated state consists of relative position and velocity, target and interceptor 
accelerations, and it must be properly initialized in the beginning of the engagement. The ACS is 
continuously rotating the KV, pointing the LOS towards the target, and trying to null out the target's 
deviations from the center-view. The rotation angles and rates are converted to relative position and 
velocity errors (Sr and Vr) which command the KV acceleration in the proper direction. 

5. Proportional Navigation 

Proportional Navigation (PN) is an end-game guidance that calculates the acceleration command in 
the y and z spacecraft axes. It is a function of the closing velocity Vc, the rate of change of the LOS 
angle assuming the KV is tracking the target, and the estimated target acceleration E(At). 

( ) ( )A N V
d LOS

dt
E Acom c t= +         (5.1) 

Equation 5.1 can also be written in the following form 
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Where: Sr and Vr are the relative position and velocity perpendicular to the LOS. N is a constant that 
can be adjusted, typically between 3 and 4. The time-to-go for an accelerating target is calculated 
from Equation 4.1. The PN has the advantage that it does not require accurate range measurements 
but only LOS rate from the seeker and an approximate estimate of the closing motion for the tgo 
calculation. If initialized properly it will converge to zero relative position when tgo=0. Its main 
disadvantage is sensitivity to seeker noise when the target is very far away and the LOS rate is small. 
It causes the interceptor to be chasing noise and using up a lot of fuel. 

 

5.1 Proportional Navigation Simulation  

Figure 5.1 shows a simple PN simulation model. It does not include the state estimator which 
calculates relative position, velocity and acceleration from the range and seeker measurements. In 
this example we integrate the relative acceleration in the body frame to calculate the relative velocity 
and miss distance. 
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Figure 5.1 End-Game Simulation using Proportional Navigation 
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Figure 5.2 Proportional Navigation Guidance 

The inertial target acceleration AT is transformed to KV body axes and the relative acceleration 
between the two bodies is constructed by subtracting the KV acceleration. In the absence of an 
estimator, the relative acceleration is integrated twice to calculate relative velocity Vt and relative 
position St. The initialization file “start.m” loads the Flixan generated dynamic models and initializes 
the relative position, velocity and acceleration states in all 3 directions. From the relative state 
variables and the time-to-go calculation, the proportional navigation algorithm calculates the KV 
acceleration command Acom. This command drives the acceleration control system which fires the 
appropriate divert thrusters to produce the necessary acceleration intended to bring the final relative 
position to zero at tgo=0. 

5.2 PN Simulation Results 

Figure 5.3 shows the simulation results obtained from the PN simulation model which is implemented 
in file “Sim_6dof.mdl” in subdirectory “Examples\Interceptor Spacecraft\2 Proportional-Navigation 
Sim”. The spacecraft subsystem uses the Flixan derived spacecraft model “rigbod_mod.m” which 
includes rigid and flex modes. There is also a similar simulation model in file “Sim_6dof3.mdl” that 
uses the spacecraft model “kkv_acs.m” that was created using the flight vehicle modeling program. 
The two systems were previously compared in Figure 1.4.1 using the Simulink file 
“Model_Compare.Mdl”. The simulations are initialized from file “start.m” which includes also the 
relative position and velocity of the two bodies at t=0. The target also has a constant (x,y,z) 
acceleration. The file Pl.m plots the results as a function of the calculated tgo. 
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The first plot shows how the relative position changes from its initial values in the axial and the two 
normal directions as a function of tgo. It is reduced to zero at impact when tgo=0, in all 3 directions. 
The velocity along the LOS is increasing because the target is accelerating towards the KV at 10 
(feet/sec2). The relative velocities and accelerations, however, normal to LOS are also increasing as 
the KV approaches the target. This is not a desirable condition. The normal Ay and Az accelerations 
are noisy due to the thruster firings. The throttle commands to the thrusters are either zero or ±1 
because the state-space models are scaled and include the actual thrusts. Throttle inputs of ±1 imply 
±Thrust_Max. The results from the second simulation model in file “Sim_6dof3.mdl” are almost 
identical. 

 

Figure 5.3 Simulation Results Using Proportional Navigation 
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6. Optimal Control Guidance 

The optimal control guidance uses the Linear Quadratic Regulator solution that calculates a time-
varying state-feedback control law that will take out the relative position error at the estimated 
impact time. It takes into consideration two important issues/ requirements. The first issue is that 
there is a significant amount of noise in the measurement, especially when the distance from the 
target is large. We don’t want the kill vehicle to be chasing noise because it will consume its 
propellant fast. Therefore, we need a control system with variable bandwidth. Starting at low 
bandwidth for fuel efficiency and increasing it inversely proportional with time-to-go in order to 
improve performance near impact, where it is needed most and the signal to noise ratio is good. The 
second issue to be considered in the design is the uncertainty in the tgo calculation which is based on 
navigation measurements and subject to delays. We want a successful hit even if it occurs a little 
sooner or a little later than expected. One way to improve success is to reduce the relative side 
velocity Vr to zero a short time prior to the estimated impact time, and maintain a high gain system 
until impact or switch to PN. 

6.1 Transient LQR Optimal Control Design 

The previously described design requirements can be captured in the performance index J, equation 
6.1 that can be optimized by the Transient Linear Quadratic Regulator algorithm. The index J is based 
on the End-Game dynamic model of Equation 4.2 that describes the relative motion in a direction 
perpendicular to the LOS, either y or z axis, and at this point we are assuming that all states are 
available for state feedback. 
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

' ( )' ( )
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J x Q x R u dt x t P x t
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f f

f

= +

= + +∫ 2

0
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      (6.1) 

Where: the matrices Q and P1 and R, are weights that trade control acceleration versus system 
performance to disturbances.  

Q is a positive semidefinite matrix that penalizes the state error along the trajectory 
R  is a scalar that penalizes the control along the trajectory which is related to fuel  
P1  is a positive semidefinite matrix that penalizes the state vector error only at the final time tf 
 
They are selected to achieve a satisfactory trade-off between fuel consumption and robustness to 
miss distance errors, in the presence of seeker noise and range measurement errors. Since we cannot 
control the target motion but only the interceptor’s, for control design we ignore the second input to 
the dynamic model and keep only the AIcom input. The target acceleration input will be used to inject 
noise in the analysis.  
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During the early part of the trajectory where the solution is steady-state, we avoid penalizing much 
the position and velocity errors perpendicular to the x-axis in the Q matrix. The last term in the 
performance index equation that includes the matrix P1 produces the time-varying state-feedback 
gain. The terminal position and velocity states are heavily penalized in matrix P1.  By adjusting the 
velocity coefficient we can reduce the terminal velocity Vr to almost zero at impact, that is, in 
addition to the relative position Sr. Reducing the perpendicular components of the relative velocity Vr 
near zero at impact makes the optimal control law less sensitive to range errors. The LQR solution in 
equation 6.2 calculates a time varying state-feedback gain matrix Kc(t) that satisfies the design 
requirements by optimizing the performance index defined in equation 6.1. 
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The time-varying matrix P(t) is always positive definite and symmetric and is obtained by solving the 
transient Riccati equation 6.2b. Its terminal value at impact is equal to the value of the terminal state 
weight matrix P1, i.e. P(tf)=P1. This property is used for solving the Riccati equation numerically after 
initializing it at the terminal time tf and integrating backwards in time to t=0. The resulting control law 
is a time varying state-feedback that provides normal acceleration to the interceptor as a function of 
the four states, which at this point we assume that they are all available for feedback. In our next step 
we will design a Kalman-Filter to estimate the states from the system output. The same control law is 
used for both: the y and z axes, since the spacecraft is symmetric and there is no coupling between 
the y and z directions. It is important to mention that the final time tf is not necessarily the impact 
time but it may be a time before impact that we wish to switch control laws, to Proportional 
Navigation, for example. The terminal goal in this case may be to achieve favorable conditions for PN 
initialization.  

The optimal control design boils down to choosing a satisfactory trade-off between two scalars in 
equation 6.3: the fuel weight R and the terminal state weight p. A large R penalizes the fuel usage. 
The larger p gets, the more the final normal relative position and velocity are reduced close zero at 
impact. This, however, is achieved at the expense of propellant consumption or that the control 
demand may exceed the maximum acceleration capability of the interceptor’s thrusters. Tgi is a short 
period before impact when you expect the position and velocity to converge to zero. 
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6.2 Optimal Control Design and Simulations 

We will now use Flixan to design the time-varying control system and analyze it using Matlab 
simulations. The analysis files for this example are located in folder: “Examples\Interceptor 
Spacecraft\3 Optimal Control Design”. The directory includes the input file “End_Game_s.Inp”, shown 
below, that contains input data for the continuous LQR design. That is, for the steady-state LQR 
control, the time-varying state-feedback LQR, the Kalman-Filter, and for the steady-state output-
feedback LQG design that combines the steady-state LQR gain Kc and the Kalman-Filter gain Kf to a 
dynamic output-feedback controller. The input file also includes a batch set for fast data processing, 
and datasets for Matlab conversions. The systems filename “End_Game_s.Qdr” contains the End-
Game dynamic model described in Equation 4.2, the control design matrices: Qc, Rc, and P1, the 
Kalman-Filter design matrices Qmn, Rmn, the control gain Kc and the Kalman-Filter gain Kf which are 
generated by the Flixan LQR design program. 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch for preparing End-Game Control design Models 
! This batch Generates LQR State-Feedback, Kalman-Filter and Output 
! Feedback Dynamic Controller 
Retain System    : Simple End-Game Model   
Retain Matrix    : State Weight Matrix Qc (4x4)  
Retain Matrix    : Output Weight Matrix Qc (2x2)        
Retain Matrix    : Control Weight Matrix Rc     
Retain Matrix    : Terminal State Weight Matrix P1 (4x4)     
Retain Matrix    : Performance Criteria C1       
Retain Matrix    : Output Performance Weight Matrix Qc3     
Retain Matrix    : Measurement Noise Matrix Rmn (2x2)    
Retain Matrix    : Process Noise Matrix Qpn (4x4)              
! 
LQR Control Des  : LQR Control Design for Simple End-Game Model      
State Estimator  : Kalman-Filter Design for Simple End-Game Model   
LQG Control Des  : LQG Control Design for Simple End-Game Model 
Transient LQR    : Transient LQR Design for Simple End-Game Model  
! 
To Matlab Format : Simple End-Game Model 
To Matlab Format : LQG Control Design for Simple End-Game Model  
To Matlab Format : LQR State-Feedback Control for Simple End-Game Model  
To Matlab Format : Kalman-Filter Estimator for Simple End-Game Model 
------------------------------------------------------------------------------------------------------- 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Simple End-Game Model                                                                                                                                                           
! Design the State-Feedback Matrix Kc using the Output  
! Criteria Matrix C= Identity 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc                  LQR State-Feedback Control for Simple End-  
------------------------------------------------------------------------------------------------------- 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design for Simple End-Game Model                                                                                                                                                         
! Design the Kalman-Filter Gain Matrix Kf using the 
! Process Noise Matrix G = Identity 
! 
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model                                                                                                                          
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn (4x4)                                                                                                                
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                            
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
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DYNAMIC OUTPUT FEEDBACK LQG CONTROL DESIGN                                                                                                                                                               
LQG Control Design for Simple End-Game Model                                                                                                                                                           
! Combine State-Feedback with KF Gain to Design a Linear Quadratic  
! Gaussian Control System for the Plant: Simple End-Game Model 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
State-Feedback (Kc) is Gain Matrix   : Kc                  LQR State-Feedback Control for Simple End-  
Kalman-Filter Estim Kf is Gain Matrix: Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
TRANSIENT LQR CONTROL DESIGN WITH TIME-VARYING GAINS                                                                                                                                                     
Transient LQR Design for Simple End-Game Model                                                                                                                                                         
! To Generate Time-Varying State-Feedback Gain Kc(t) 
! as a Function of Time-to-Go, in File: Gains.dat 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Terminal State Penalty Weigh P1 Matrix P1                  Terminal State Weight Matrix P1 (4x4)                                                                                                         
Continuous LQR Solution, Final Time, Number of Points:     20.00     800.0                                                                                                                          
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Simple End-Game Model 
System 
end_game 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQG Control Design for Simple End-Game Model  
System 
Control 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Simple End-Game Model  
Matrix Kc 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator for Simple End-Game Model 
Matrix Kf 
------------------------------------------------------------------------------------------------------- 

 
The Flixan LQR transient design program also calculates the time varying state-feedback gain Kc(t) as a 
function of time-to-go. It requires the weight matrices: Qc, Rc, and P1, the initial time-to-go (20 sec), 
and the number of gain calculation points (800). The gains versus time are saved in file “Gains.dat” 
with the time-to-go in the first column. This file is used as a look-up table in the simulations. Only the 
first 4 gains that correspond to the interceptor acceleration command are used in this case. The end-
game dynamic model is saved in file “end_game.m”, and the steady-state output-feedback control 
system is saved in “control.m” for Matlab analysis. The gain matrices Kc and Kf are also saved and 
loaded into Matlab. 

6.2.1 Simulation Models 
We will first analyze the steady state-performance of the spacecraft and then the transient motion 
with time varying state-state gains. Two simulation models were created to analyze the system’s 
response from an initial relative condition of position, velocity and acceleration. 

6.2.2 Steady-State Simulation 
The steady-state analysis is applicable when the target is sufficiently far away from the interceptor 
and the control gains are constant. The Simulink model is “EndGame_Sim1s.mdl”, shown in Figure 
6.2, and it is located in the same “Examples\Interceptor Spacecraft\3 Optimal Control Design” 
directory. 
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Figure 6.2 Steady-State Simulation Model “EndGame_Sim1s.mdl” 
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The dynamic model is the Flixan generated system “Simple End-Game Model” in file “end_game.m”. 
The Flixan generated steady-state control system is “LQG Control Design for Simple End-Game Model” 
in file “Control.m”. It is also dynamic and it includes parameters from the plant model, the steady-
state feedback gain Kc and the Kalman-Filter gain Kf, as shown in Figure 6.3. The two systems and 
matrices are loaded into Matlab by executing the file “init.m”. This script also initializes the state-
vector x0. Notice, that this configuration cannot be used in the time-varying case because Kc(t) is 
varying. 

 

Figure 6.3 Steady-State LQG Output Feedback Controller/ Plant Interconnection 

We can use this simulation model to calculate the system’s response to an accelerating target 
disturbance, as shown in Figure 6.4.  

 
Figure 6.4 Interceptor Acceleration is responding to Noisy Target Accelerations 
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Figure 2.5 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

This simulation model is also used to calculate the system’s response to initial position and velocity 
errors while tracking an accelerating target, see Figure 6.5. Notice that the system’s response at 
steady-state is intentionally slow in order to save propellant because the target is still far away. This 
causes noticeable position error due to target acceleration. 
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6.2.3 Simulation with Time Varying Control Gains  

The simulation model in Figure 6.6 is implemented in file “EndGame_Sim2s.mdl”. The control gains 
are time-varying as a function of time-to-go. They were calculated by the Flixan Transient LQR 
program as already mentioned and are loaded into Matlab look-up tables from file “Gains.dat”. The 
tgo is calculated from the relative axial position, velocity and acceleration and used to look-up the 
gains from the table. The gains increase as tgo gets shorter producing an exponentially increasing 
control bandwidth. 

 

The Kalman-Filter and the control system are separate subsystems in this simulation. The Kalman-Filter is now 
used to estimate the four state variables from the relative position and the accelerometer measurements. The 
estimated states are multiplied with the four time varying gains to produce the KV acceleration command. The 
gains are functions of tgo which is calculated from the relative x-axis acceleration, velocity and range to go. 
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Figure 6.6 Simulation Model “EndGame_Sim2s.mdl” that uses Time-Varying Gains 
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Figure 6.7 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

Figure 6.7 shows the response of the time-varying control system to non-zero initial conditions versus 
time-to-go, beginning 8.5 sec before impact when the gains are still at steady state. Beginning with 
initial position and velocity errors 500 (feet) and 100 (ft/sec) respectively, the interceptor (orange) 
accelerates in order to bring the final position and velocity errors very close to zero at impact. 
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Figure 6.8 Optimal Control State-Feedback Gains as a Function of Time-to-Go 
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6.2 Optimal Control Law Simulation 

The models “Sim_6dof.mdl” and “Sim_6dof2.mdl” in folder “Interceptor Spacecraft\4 Optimal Control 
Sim”, shown in Figure 6.9, are used to implement and simulate the time-varying optimal control law 
using the already calculated state-feedback gains “gains.dat” as a function of time-to-go. They are 
similar to the simulations in Section 5.1, and are using the two Flixan generated flex spacecraft 
models “rigbod_mod.m” and “kkv_acs.m” respectively. 

 
Figure 6.9 Optimal Control Simulation Model in file “Sim_6dof.mdl” 

 

Figure 6.9b Optimal Control Guidance  
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6.3 Optimal Control Simulation Results 

The simulation is initialized from file “start.m” which loads the Flixan created models, matrices, 
optimal control gains and initializes the relative spacecraft position, velocity, and target acceleration. 
What is different in this model in comparison with the previous simulation in Section 5.1, is that in 
addition to the relative position which is driven to zero at impact (tgo=0), the normal and lateral 
velocities (Vry and Vrz) are also reduced in magnitude. It means that the interceptor direction is 
eventually shaped along the LOS, in a head-on collision with the target with zero sideslip, which 
makes it less vulnerable to range errors. Notice, there was a significant amount of side speed in the 
previous PN simulation. The divert thrust capability, however, was increased to achieve the improved 
performance. 
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Figure 6.10 Optimal Control Law Simulation file: “Sim_6dof.mdl” Response to Initial Conditions  
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7. State Estimator Design 

The LQR control law requires feedback from the state variables. However, most of the system states 
are not measurable and our next step is to design a state observer from the two outputs of the 
dynamic model, the relative position Sr and the interceptor acceleration AI perpendicular to the LOS. 
In this section we will use the steady-state Kalman-Bucy filter, an observer that will reconstruct the 
state vector from the measurements so that we can apply our optimal state-feedback control law. 
The estimated state approximately converges to the actual state vector. The state observer also 
requires knowledge of the dynamic model in equation 4.2. We will also assume that the system is 
corrupted with two types of noise:  state excitation noise, and measurement noise, as shown in 
equation 7.1. They are white noise, zero mean, and uncorrelated 
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Where: 
x(t) is the state vector of dimension n 
u(t) is the control input vector of dimension m 
y(t) is the measurement vector of dimension r (r≤n) 
w(t) is the process noise of dimension l, where (l≤n) and has a covariance matrix Qpn,  

where: Qpn= Qpn’ ≥0 
v(t) is the measurement noise with intensity Rmn= Rmn’ ≥0 
 
The solution to the Kalman Filter is obtained by minimizing the quantity in equation 7.2, where the 
matrix W is (nxn) positive semi-definite. The state vector estimate 𝑥𝑥� from the KF output will converge 
to the actual system state x. Figure 7.1 is a functional block diagram representation of the Kalman-
Filter showing the output and its interconnection with the plant input u and output y. 

( ) ( )[ ]J E x t x t W x t x t as t= − − → ∞lim ( ) ( ) ' ( ) ( )      (7.2) 
 
The estimate is obtained by solving the following differential equation 7.3, where Kf is the Kalman-
Filter gain. The solution exists when the pair (A’,C’) is stabilizable and the pair (A, GQpnGT) is 
detectable. The state estimate is initialized with the expected initial state vector at t=0,
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The matrix P is symmetric positive semi-definite and it is obtained from the steady-state solution of 
the asymptotic Riccati equation 
 
A P P A G Q G P C R C PT

pn
T T

mn+ + − =−1 0       (7.4) 
 

 

Figure 7.1 Kalman-Filter State-Vector Estimator 

 

7.1 Simple End-Game Simulation Model with KF Estimator 

The end-game simulation in Figure 7.1 is similar to the simple model used in Section 6.2. It uses the 
end-game model of equations 4.2 and it includes a Kalman-Filter to estimate the four states from the 
2 measurements which are: relative position and KV accelerometer perpendicular to the line-of-sight. 
It also uses the time-varying control law with the exception that the 4 state-vector feedback is now 
replaced with the output of the Kalman-Filter. The states are initialized to the same values as the 
actual states since they are replacing the original states. The simulation files are in folder “Interceptor 
Spacecraft\5 Simple KF Estimator”, and the Simulink model is in file “KF_Sim.mdl”. The initialization 
file “init.m” loads the dynamic model “end_game.m”, the gains from “Gain.mat” which are functions 
of tgo, and the Kalman gain Kf that was obtained by solving equation 7.3 in Flixan. It also initializes the 
dynamic model and the Kalman-Filter states. The relative position, velocity, and KV acceleration 
responses in Figure 7.2 are identical to those obtained by using direct state-feedback. The effects of 
noise are more visible near the end of the trajectory where the gains are high. 
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Figure 7.1 Simple End-Game Simulation “KF_Sim.mdl” that uses Feedback from the Kalman-Filter Output 
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Figure 7.2 Response of the End-Game Simulation Model “KF_Sim.mdl” to Initial Condition and Noise 
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8. Dual Mode Simulation Model that Uses Combination of Optimal Control and PN  

We will now apply our control law and estimator design using the detailed spacecraft models that 
includes flexibility. We will combine the two control laws in one model to achieve better impact 
results, beginning the trajectory with the optimal control law to reduce the normal components of 
velocity to almost zero prior to impact. Assuming that our range estimates are not very accurate and 
hence the tgo calculation, we will try to bring the normal velocity to almost zero, one second before 
impact and at this point we switch to fixed gains Proportional Navigation, and remain in this mode 
until impact. We also introduce noise in the position measurements. The relative measurements of 
the target position (Sry, Srz) and velocity (Vry, Vrz) are calculated from the spacecraft azimuth and 
elevation attitude as it is tracking the target. 

 



53 
 

 
Figure 8.1 Combined Guidance Using Optimal Control with Proportional Navigation; the Relative Motion State Vector is estimated by 
a Kalman-Filter  

The optimal control logic in Figure 8.1 uses the time-varying gains from the file calculated in Section 6 using 
the transient LQR program. The Tgo input is shifted one second earlier than expected, in order to accommodate 
the uncertainty in range and the exact impact time. It also reduces the relative velocities closer to zero which is 
a good property for initializing PN. The switch activates the PN control law 1 sec before the expected impact 
time which guides it all the way to impact. Since the side velocities are small the sensitivity to range error is 
reduced and a successful impact may occur even if the target is a little closer or a little further away than 
expected.  

 
Figure 8.2 Normal and Lateral Motion Kalman-Filters Estimate the Relative Vehicle Position, Velocity, and Acceleration  
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Figure 8.2 shows the Kalman-Filter which estimates the relative spacecraft position and velocity, and 
also the accelerations in the y and z directions. The KF inputs are relative position calculated from the 
interceptor’s attitude, and accelerometer measurements. It also receives the acceleration command 
calculated from the control law. The simulation model is in file “Sim_6dof.mdl” located in folder 
“Interceptor Spacecraft\6 Combined End Game Sim”. It uses the Flixan generated flex spacecraft 
system “rigbod_mod.m”. There is a similar model in file “Sim_6dof2.mdl” that uses the Flixan 
generated flight vehicle system “kkv_acs.m”. The results from both simulations are identical. 

8.1 Dual Mode Simulation Results 

The target-to-KV relative position errors measured by the seeker and the accelerometer 
measurements are used to estimate the state-vector and generate acceleration commands to take 
out the position errors. The relative velocity errors are also significantly reduced by the optimal 
control law prior to switching to PN, that is 1 sec before impact. The ACS is tracking the target 
position by rotating the KV. Noise is introduced in the position measurement which makes the 
response more noisy, due to structural flexibility. 

 

Figure 8.3 The Relative Position is less than 0.8 feet at Impact Using Dual Mode OC/ PN Control 
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