
 
6.1 Overhead Crane Example 

In this example the plant system consists of two masses m1 and m2 connected with a rope. The mass 
m1 is suspended from m2 by the rope, as shown in Figure 6.1.1, representing a simple model of an 
overhead crane. The mass m2 can only move along they y direction as a result of the control force F 
which is applied on m2 along they y direction. Equations 6.1.1 describe the motion of the two masses  
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Where: 
g  is the acceleration due to gravity 
θ  is the angle of the string from vertical 
L  is the length of the pendulum 

 

Figure 6.1.1 Simple Overhead Crane Plant Model 
  



The design requirement for this plant is to control the position y1 of the bottom mass m1 by applying 
a control force F on the top mass m2 and controlling its motion y2. From equations 6.1.1 we can write 
the plant equations in state space form, assuming that g/l =1 and m1=m2 
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Where: 
x(t)  is the state vector, x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] 
u(t)  is the control force F 
w(t) is the process noise vector 
 
The output vector in equation 6.1.3 consists of two deterministic measurements: the position y1 of 
the mass m1 and the pendulum angle θ of the rope from vertical.  
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Where: v is a zero mean white measurement noise vector 
 

The Analysis 

In this example we shall apply the Linear Quadratic Regulator method to design a positioning control 
system for the bottom mass using the two output measurements (y1, θ) to calculate the control force 
on m2. The LQR will guarantee a stable solution, but since we want to control the position y1 of the 
bottom mass m1 we will introduce one additional state in the design model (y1-integral) and we will 
design a state-feedback controller for the augmented 5-state plant. However, we cannot directly 
apply state-feedback because most of the states are not measurable, only y1 and θ are. We will 
therefore design an estimator for the four state vector, x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] and apply the state-feedback 
from the estimated states plus the y1-integral which is known and it does not have to be estimated. 
We will use Flixan to generate the dynamic models for design and analysis, and design the LQR state-
feedback and the Kalman-Filter observer. Then we will analyze the control system performance in 
Matlab using simulations and perform frequency response analysis. 

  



The Flixan Files 

The files for the Overhead Crane example are in subdirectory: “Flixan\LQG\Examples\Crane”. The 
input file is “Crane.Inp” and contains the Flixan datasets for generating the plant models, calculating 
the steady-state LQR gains, and the Kalman-Filter. The crane design model is “Overhead Crane Design 
Model”. It is augmented by including the y1-integral state which is intended to improve control of the 
y1 position. The augmented system title is “Crane Design Model with Y1 Integral” and it is used to 
design the LQR 5-state-feedback gain Kc1. The 3 outputs of matrix C (y1-integral, y1, and θ) are 
penalized in the LQR optimization via matrix Qc2. The control force is penalized via the scalar Rc to 
achieve a satisfactory trade-off between speed of convergence and force usage. The matrices and 
systems are in file “Crane.Qdr”. The batch set is used to process the entire file. 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch to prepare models for the Overhead Crane Analysis and Design 
! This batch Generates Dynamic Models, LQR State-Feedback Control,  
! and Kalman-Filter Gain and Estimator for the Overhead Crane  
! 
! Retain the Old System and Matrices 
Retain System    : Overhead Crane Design Model   
Retain System    : Overhead Crane Analysis Model 
Retain Matrix    : Output Weight Matrix Qc2  
Retain Matrix    : Control Weight Matrix Rc 
Retain Matrix    : State Weight Matrix Qc4        
Retain Matrix    : Process Noise Covariance Matrix Qpn4   
Retain Matrix    : Measurement Noise Covariance Rmn2 
! 
!                  Control and Estimator Design 
Transf-Function  : Integrator 
System Connection: Crane Design Model with Y1 Integral  
LQR Control Des  : LQR Control Design 1 for Crane Design Model with Y1 Integral    
State Estimator  : Kalman-Filter Design 1 for Overhead Crane Design Model  
! 
!                  Convert the Design and Analysis Models and Gains for Matlab Analysis 
To Matlab Format : Crane Design Model with Y1 Integral  
To Matlab Format : Overhead Crane Analysis Model 
To Matlab Format : LQR State-Feedback Control 1 for Crane Design Model with Y1 Integral  
To Matlab Format : Kalman-Filter Estimator 1 for Overhead Crane Design Model  
------------------------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
! Integrates the Mass-1 Displacem Y1 
!  
Continuous 
TF. Block #  1    (1/s)                                           Order of Numer, Denom=  0  1 
Numer 0.0         1.0      
Denom 1.0         0.0 
...................................................... 
Block #, from Input #, Gain 
 1       1       1.00000 
........................... 
Outpt #, from Block #, Gain 
 1       1       1.00000 
........................... 
Definitions of Inputs  =   1 
Mass-1 Displacem (y1) 
  
Definitions of Outputs =   1 
Integral od Mass-1 Displacem (y1-integr) 
------------------------------------------------------------------------------ 
  



INTERCONNECTION OF SYSTEMS ..... 
Crane Design Model with Y1 Integral 
! Creates an Augmented plant for control Design by including the integral  
! of mass-1 displacement in the states and output. 
! 
Titles of Systems to be Combined 
Title 1 Overhead Crane Design Model 
Title 2 Integrator    
SYSTEM INPUTS TO SUBSYSTEM  1                                                           Plant(s) 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                    Control Force  
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                        Integrator 
System Output  1 from Subsystem  2, Output  1, Gain= 1.0                                y1 integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                        Plant Outputs 
System Output  2 from Subsystem  1, Output  1, Gain= 1.0                                y1 displ 
System Output  3 from Subsystem  1, Output  2, Gain= 1.0                                theta 
.............................................................................. 
 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                 Plant Outp to 
Control Input 
Subsystem  1, Output  1 to Subsystem  2, Input  1, Gain= 1.0                            y1 displacem 
.............................................................................. 
Definitions of Inputs  =   1 
Disturbance Force   (Fdist)     
 
Definitions of Outputs =   3 
Mass-1 Displacem-Integral (y1-int) 
Mass-1 Displacement       (y1) 
Pendulum Angle            (theta)    
------------------------------------------------------------------------------------------------- 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design 1 for Crane Design Model with Y1 Integral                                                                                                                                                     
! State-Feedback Control Design for the Augmented 5-state Crane Model  
! using the output matrix C in the optimization criteria 
! 
Plant Model Used to Design the Control System from:        Crane Design Model with Y1 Integral                                                                                                                  
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc2                 Output Weight Matrix Qc2                                                                                                                      
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc1                 LQR State-Feedback Control 1 for Crane  
------------------------------------------------------------------------------------------------- 
 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design 1 for Overhead Crane Design Model                                                                                                                                                    
! State Observer for the Original 4-state Crane Model, Estimating  
! Positions and Velocities of the two masses from the plant output 
! 
Plant Model Used to Design the Kalman-Filter from:         Overhead Crane Design Model                                                                                                                  
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn4                Process Noise Covariance Matrix Qpn4                                                                                       
Measurement Noise Covariance is Matrix Rmn2                Measurement Noise Covariance Rmn2                                                                                                     
Kalman-Filter Estimator is Gain Matrix Kf1                 Kalman-Filter Estimator 1 for Overhead  
------------------------------------------------------------------------------------------------- 

 
The estimator uses the original 4-state plant model: “Overhead Crane Design Model” which does not 
include the y1-integral. The Flixan program calculates the Kalman-Filter gain Kf1 which is exported to 
Matlab and used in the observer simulation to estimate the 4 states from the outputs y1 and θ. The 
noise covariance matrices Qpn4 and Rmn2 are located in the systems file “Crane.Qdr”. Matlab 
conversion datasets are included at the bottom of the input file to create m-files for the gains and 
systems that can be loaded into Matlab. 
  



CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Overhead Crane Analysis Model  
System 
Analysis_Plant 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Crane Design Model with Y1 Integral  
System 
Design_Plant_Int 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control 1 for Crane Design Model with Y1 Integral 
Matrix Kc1 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator 1 for Overhead Crane Design Model 
Matrix Kf1 
------------------------------------------------------------------------------------------------- 

 
Simulation Models 
 
Figure 6.1.2 is a simulation model “Crane_Sim-1.mdl” used to test the state-feedback gain Kc1 
directly from the four states: x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] which they are not measurable, but it is intended to 
check out the control design. Figure 6.1.3 shows the system’s response to y1 displacement command, 
which is logically what a person would do naturally using common sense. First, move the top mass as 
fast as possible half way towards the intended position and stop for a short period waiting for the 
bottom mass to swing. The bottom mass does not immediately feel the motion until the pendulum 
angle θ is big enough. When the bottom mass swings over to the opposite extreme of the pendulum 
angle -θ, which is very close to the intended position, the top mass is immediately moved above the 
target position to prevent it from oscillating further. This is essentially what the LQR control system 
does in Figure 6.1.3 but it also takes into consideration the limited control system bandwidth. This 
requires knowledge of the pendulum frequency which is captured in the design plant model and 
subsequently in the control design to dampen out the pendulum oscillations. Notice the “hick-up” in 
the y2 response as it waits for the bottom mass to swing in the opposite side of the pendulum. 

 
Figure 6.1.2 State-Feedback Simulation model “Crane_Sim-1.mdl” 



 
Figure 6.1.3 System’s Response to a Displacement Command y1-command 
  



But in reality the state vector is not available, that is why we designed the Kalman-Filter observer to 
estimate the states for feedback. The simulation in Figure 6.1.4 shows the control system which 
includes the state estimator in detail below. The inputs to the estimator are the two measurements: 
y1, and θ, and also the control force. The outputs are the four states. The y1-itegral is not included 
because it is measurable. The file init.m loads the Flixan generated systems and matrices into Matlab 
for the analysis. 

 

Figure 6.1.4 Output Feedback Simulation model “Crane_Sim-2.mdl” that includes the Estimator 

  



 

Figure 6.1.5a Response of System “Crane_Sim-2.mdl” to y1 Displacement Command 

 

Figure 6.1.5 shows the response of the output-feedback system which is not very different from the 
state-feedback system. The estimator changes slightly the response. The hick-up on the y2 
displacement is not as intense as in the state-feedback case and the oscillation damping is slightly 
faster. Also, the reverse force amplitude is not as high as the forward force and it is applied for a 
longer period.  

 

  



 

Figure 6.1.5b Response of System “Crane_Sim-2.mdl” to y1 Displacement Command 

 

  



Frequency Response Analysis 

 

Figure 6.1.6 Frequency Response Analysis Model “Open_Loop.Mdl” 

 

  



Frequency response analysis is used to check out the control system’s stability in terms of gain and 
phase margins. The Simulink model “Open_Loop.Mdl” in Figure 6, that has the loop opened at the 
plant force input, is used to calculate the frequency response. Figure 6.1.7 shows the Bode and 
Nichols plots including the stability margins. Notice that the system has resonance of considerable 
amplitude at 1.42 (rad/sec) which is the pendulum frequency. This is how the control system 
counteracts the natural pendulum frequency by introducing an anti-resonance at the same frequency 
since it is designed around the plant model. Like we said earlier, the system needs to know how long 
to wait for the hick-up in order to counteract the natural frequency. Figure 6.1.7 below shows the 
phase and gain margins before and after the resonance and they are reasonable for stability. 

 

Figure 6.1.7 Open-Loop Frequency Response Analysis, Bode and Nichols Plots 

  



6.2 Design of a Space Interceptor 

 

In this example we will analyze a guided intercept between two space vehicles: an interceptor which 
is a kinetic vehicle and a target that may be a meteorite heading towards the earth, space debris, or 
an enemy missile. We assume that the interceptor has already been placed in a collision course with 
the target by a mid-course booster rocket and the vehicle is no longer accelerating but drifting 
towards the target. Its translational motion is controlled only in two directions (y and z) by firing 
divert thrusters perpendicular to the x-axis. The end-game is a dynamic engagement using closed-
loop guidance to improve impact precision and probability, especially when the target is randomly 
accelerating in order to avoid getting hit. The interceptor uses an optical sensor to track the target 
and its line-of-sight (LOS) is always pointing towards the target. It has an Attitude Control System to 
track the target at the center of the field of view by maneuvering its attitude and aligning the x-axis 
with the target.  

If the target is not maneuvering and if the mid-course boost was executed perfectly, the target would 
remain in the center of the seeker's field of view all the way to impact. If the seeker detects an error 
or the target is moving perpendicular to the LOS, the guidance will fire the corresponding divert 
thrusters to produce the necessary acceleration that will zero the error. It is assumed that the 
approximate relative position, velocity, and acceleration of the target are calculated from the seeker 
azimuth and elevation measurements, and from the target distance which is estimated from 
navigation and used in the End-Game algorithm.  



6.2.1. End-Game Dynamic Model 

The dynamic model in this Section describes the relative motion between the interceptor spacecraft 
and the target. The relative motion of the two spacecraft can be described by two sets of equations: 
one describing the relative motion along the x-direction which is along the main velocity direction 
and the LOS, and another set of equations that describe the motion perpendicular to the LOS. The 
motion along the LOS which is along the line joining the two spacecraft is uncontrollable because the 
interceptor has no thrust in the x-direction and the relative motion equation is only used to calculate 
the time to impact (tgo). The relative motion perpendicular to the LOS along the y and z directions is 
controlled by the interceptor’s divert thrusters and it is identical in both perpendicular directions. 

 

Figure 6.2.1 Interceptor Spacecraft 

 
The time-to-go calculation tgo for an accelerating target in equation 6.2.1 is calculated from the 
estimated acceleration Ax, relative velocity Vx, and the distance to target R. If the target is not 
accelerating the time-to-go simplifies to: t R Vgo x=  

t
V V RA

Ago
x x x

x

=
− + −2 2

        (6.2.1) 

 
Equation 6.2.2 describes the relative spacecraft motion perpendicular to the LOS (either y or z 
directions). It is controlled by the divert thrusters that provide the interceptor acceleration AI. It 
describes the motion in the local inertial frame which is defined by the position of the interceptor at 
the initialization time, when it initially detects the target. 
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The state vector consists of four states: 

Sr is the relative vehicle position (target – interceptor) 
Vr is the relative vehicle velocity (target – interceptor) 
AT is the target acceleration normal to the LOS 
AI is the interceptor acceleration perpendicular to the LOS 
 
The two inputs are: 

AIcom Interceptor Acceleration Command perpendicular to the LOS 
ATcom Target Acceleration Command perpendicular to the LOS 
 
The dynamic model in equation 6.2.2 captures the maneuverability of the two vehicles perpendicular 
to the LOS and introduces it in the control design. In addition to relative position and velocity it 
includes the target and interceptor bandwidths described by first order lags of frequencies WT and WI 
respectively, where: WT=5 (rad/sec) and WI=100 (rad/sec). Naturally the interceptor must have a 
broader bandwidth than the target because it is smaller in size. Sr and Vr are the target’s position and 
velocity relative to the kill vehicle perpendicular to the LOS. 
 
The control guidance of the interceptor must sense the relative motion of the target perpendicular to 
its x-axis using the optical sensor and apply the proper acceleration command to the thrusters in 
order to null-out the relative position at the estimated impact time. We can apply the Linear 
Quadratic Regulation to calculate the state-feedback control law that will take out the relative 
position at the expected impact. However, we must take into consideration two additional issues. The 
first issue is that there is a significant amount of noise in the measurement, especially when the 
distance-to-go is large. We don’t want the kill vehicle to be chasing noise because it will consume its 
propellant fast. Therefore, we need a control system with variable bandwidth. Starting at low 
bandwidth for fuel efficiency and increasing it inversely proportional with time-to-go in order to 
improve performance near impact, where it is needed more and the signal to noise ratio is good. The 
second issue to be considered in the design is the uncertainty in the tgo calculation which is based on 
navigation measurements and subject to delays. We want a successful hit even if it occurs a little 
sooner or a little later than the expected time. One way to improve success is to reduce the relative 
side velocity Vr to zero a short time prior to the estimated impact time, and maintain a high gain 
system all the way to impact.  

  



6.2.2. Optimal Control Design 

The previously described design requirements can be captured in the performance index of the Linear 
Quadratic Regulator algorithm. After simplifying the state-space representation of the engagement 
model and assuming that all states are available for feedback, the performance index J is defined as 
follows 
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Where: the matrices Q and P1 and the scalar R in the performance index equation 6.2.3 are weights 
that trade control acceleration versus system performance to disturbances.  
 
Q is a positive semidefinite matrix that penalizes the state error along the trajectory 
R  is a scalar that penalizes the control along the trajectory which is related to fuel  
P1  is a positive semidefinite matrix that penalizes the state vector error only at the final time tf 
 
They are selected to achieve a satisfactory trade-off between fuel consumption and robustness to 
miss distance errors, in the presence of seeker noise and range measurement errors. During the early 
part of the trajectory where the solution is steady-state, we avoid penalizing much the position and 
velocity errors perpendicular to the x-axis in the Q matrix. The terminal position and velocity states 
are heavily penalized by matrix P1, because reducing the perpendicular components of the relative 
velocity to almost zero at impact, makes the optimal control law less sensitive to range errors. 
 
The optimal state-feedback control law is obtained by synthesizing the time-varying LQR problem 
around the plant model of equation 6.2.2. Since we cannot control the target motion but only the 
interceptor’s, for control design we ignore the second input to the dynamic model and keep only the 
AIcom input. The target acceleration input will be used in the analysis. The last term in the 
performance index equation that includes the matrix P1 produces the time-varying state-feedback 
gain. The matrix P1 penalizes the terminal position and velocity, and by adjusting the velocity 
coefficient we can reduce the terminal velocity Vr to almost zero at impact, that is, in addition to the 
relative position Sr. The LQR solution in equation 6.2.4 calculates a time varying state-feedback gain 
matrix Kc(t) that optimizes the performance index of equation 6.2.3 and satisfies the design 
requirements.  
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The time-varying matrix P(t) is always positive definite and symmetric and is obtained by solving the 
transient Riccati equation 6.2.4b. Its terminal value at impact is equal to the value of the terminal 
state weight matrix P1, i.e. P(tf)=P1. This property is used for solving the Riccati equation numerically 
after initializing it at the terminal time tf and integrating backwards in time to t=0. The resulting 
control law is a time varying state-feedback that provides normal acceleration to the interceptor as a 
function of the four states, which at this point we assume that they are all available for feedback. In 
our next step we will design a Kalman-Filter to estimate the states from the system output. The same 
control law is used for both: the y and z axes, since the spacecraft is symmetric and there is no 
coupling between the y and z directions. It is important to mention that the final time tf is not 
necessarily the impact time but it may be a time before impact that we wish to switch control laws, to 
Proportional Navigation, for example. The terminal goal in this case may be to achieve favorable 
conditions for PN initialization. The optimal control design boils down to choosing a satisfactory 
trade-off between two scalars in equation 6.2.5: the fuel weight R and the terminal state weight p. A 
large R penalizes the fuel usage. The larger p gets, the more the final normal relative position and 
velocity are reduced close zero at impact. This, however, is achieved at the expense of propellant 
consumption or that the control demand may exceed the maximum acceleration capability of the 
interceptor’s thrusters. Tgi is a short period before impact when you expect the position and velocity 
to converge to zero. 
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3. State Estimator Design 

The LQR control law requires feedback from the state variables. However, most of the system states 
are not measurable and our next step is to design a state observer from the two outputs of the 
dynamic model, the relative position Sr and the interceptor acceleration AI perpendicular to the LOS. 
In this section we will present the steady-state Kalman-Bucy filter, an observer that will be used to 
approximately reconstruct the state vector from the measurements so that we can apply our optimal 
state-feedback control law. The state observer also requires knowledge of the dynamic model in 
equation 6.2.2. We shall assume that the system is corrupted by two types of noise:  state excitation 
noise, and measurement noise, as shown in equation 6.2.6. They are white noise, zero mean, and 
uncorrelated.  
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Where: 
 
x(t) is the state vector of dimension n 
u(t) is the control input vector of dimension m 
y(t) is the measurement vector of dimension r (r≤n) 
w(t) is the process noise of dimension l, where (l≤n) and has a covariance matrix Qpn,  
where: Qpn= Qpn’ ≥0 
v(t) is the measurement noise with intensity Rmn= Rmn’ ≥0 
 
The solution to the Kalman Filter is obtained by minimizing the quantity in equation 6.2.7, where the 
matrix W is (nxn) positive semi-definite. The state vector estimate 𝑥𝑥� from the KF output will converge 
to the actual system state x. Figure 6.2.2 is a functional block diagram representation of the Kalman-
Filter showing the output and its interconnection with the plant input u and output y. 
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The estimate is obtained by solving the following differential equation 6.2.8, where Kf is the Kalman-
Filter gain. The solution exists when the pair (A’,C’) is stabilizable and the pair (A, GQpnGT) is 
detectable. The state estimate is initialized with the expected initial state vector at t=0,
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The matrix P is symmetric positive semi-definite and it is obtained from the steady-state solution of 
the asymptotic Riccati equation 
A P P A G Q G P C R C PT

pn
T T

mn+ + − =−1 0       (6.2.9) 

 

Figure 6.2.2 Kalman-Filter State-Vector Estimator 
 
6.2.4. Continuous System Analysis 

The analysis files for the continuous system in this example are located in folder: “LQG\Examples\ 
End-Game\Continuous”. There is also a discrete subfolder “Discrete” for the discrete-time analysis 
using dynamic models which are discretized at 40 (msec) sampling time. The directory includes the 
input file “End_Game_s.Inp”, shown below, that contains input data for the continuous LQR design 
using Flixan. That is, for the steady-state LQR control, the time-varying state-feedback LQR, the 
Kalman-Filter, and for the steady-state output-feedback LQG design that combines the steady-state 
LQR gain Kc and the Kalman-Filter gain Kf to a dynamic output-feedback controller. The input file also 
includes a batch set for fast data processing and datasets for Matlab conversions. The systems 
filename “End_Game_s.Qdr” contains the End-Game dynamic model described in Equation 6.2.2, the 
control design matrices: Qc, Rc, and P1, the Kalman-Filter design matrices Qmn, Rmn, the control gain Kc 
and the Kalman-Filter gain Kf which are generated by the Flixan LQR design program. 



BATCH MODE INSTRUCTIONS ...............                                                              
Batch for preparing End-Game Control design Models 
! This batch Generates LQR State-Feedback, Kalman-Filter and Output 
! Feedback Dynamic Controller 
Retain System    : Simple End-Game Model   
Retain Matrix    : State Weight Matrix Qc (4x4)  
Retain Matrix    : Output Weight Matrix Qc (2x2)        
Retain Matrix    : Control Weight Matrix Rc     
Retain Matrix    : Terminal State Weight Matrix P1 (4x4)     
Retain Matrix    : Performance Criteria C1       
Retain Matrix    : Output Performance Weight Matrix Qc3     
Retain Matrix    : Measurement Noise Matrix Rmn (2x2)    
Retain Matrix    : Process Noise Matrix Qpn (4x4)              
! 
LQR Control Des  : LQR Control Design for Simple End-Game Model      
State Estimator  : Kalman-Filter Design for Simple End-Game Model   
LQG Control Des  : LQG Control Design for Simple End-Game Model 
Transient LQR    : Transient LQR Design for Simple End-Game Model  
! 
To Matlab Format : Simple End-Game Model 
To Matlab Format : LQG Control Design for Simple End-Game Model  
To Matlab Format : LQR State-Feedback Control for Simple End-Game Model  
To Matlab Format : Kalman-Filter Estimator for Simple End-Game Model 
------------------------------------------------------------------------------------------------------- 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Simple End-Game Model                                                                                                                                                           
! Design the State-Feedback Matrix Kc using the Output  
! Criteria Matrix C= Identity 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc                  LQR State-Feedback Control for Simple End-  
------------------------------------------------------------------------------------------------------- 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design for Simple End-Game Model                                                                                                                                                         
! Design the Kalman-Filter Gain Matrix Kf using the 
! Process Noise Matrix G = Identity 
! 
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model                                                                                                                          
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn (4x4)                                                                                                                
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                            
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
DYNAMIC OUTPUT FEEDBACK LQG CONTROL DESIGN                                                                                                                                                               
LQG Control Design for Simple End-Game Model                                                                                                                                                           
! Combine State-Feedback with KF Gain to Design a Linear Quadratic  
! Gaussian Control System for the Plant: Simple End-Game Model 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
State-Feedback (Kc) is Gain Matrix   : Kc                  LQR State-Feedback Control for Simple End-  
Kalman-Filter Estim Kf is Gain Matrix: Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
TRANSIENT LQR CONTROL DESIGN WITH TIME-VARYING GAINS                                                                                                                                                     
Transient LQR Design for Simple End-Game Model                                                                                                                                                         
! To Generate Time-Varying State-Feedback Gain Kc(t) 
! as a Function of Time-to-Go, in File: Gains.dat 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Terminal State Penalty Weigh P1 Matrix P1                  Terminal State Weight Matrix P1 (4x4)                                                                                                         
Continuous LQR Solution, Final Time, Number of Points:     20.00     800.0                                                                                                                          
------------------------------------------------------------------------------------------------------- 
  



CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Simple End-Game Model 
System 
end_game 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQG Control Design for Simple End-Game Model  
System 
Control 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Simple End-Game Model  
Matrix Kc 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator for Simple End-Game Model 
Matrix Kf 
------------------------------------------------------------------------------------------------------- 

 
The Flixan LQR transient design program also calculates the time varying state-feedback gain Kc(t) as a 
function of time-to-go. It requires the weight matrices: Qc, Rc, and P1, the initial time-to-go (20 sec), 
and the number of gain calculation points (800). The gains versus time are saved in file “Gains.dat” 
with the time-to-go in the first column. This file is used as a look-up table in the simulation. Only the 
first 4 gains that correspond to the interceptor acceleration command are used in this case. The end-
game dynamic model is saved in file “end_game.m”, and the steady-state output-feedback control 
system is saved in “control.m” for Matlab analysis. The gain matrices Kc and Kf are also saved and 
loaded into Matlab. 

6.2.4.1 Simulation Models 
 
We will first analyze the steady state-performance of the spacecraft and then the transient motion 
with time varying state-state gains. Two simulation models were created to analyze the system’s 
response from some initial relative condition of position, velocity and acceleration. 

6.2.4.2 Continuous Steady-State Simulation 
 
The steady-state analysis is applicable when the target is sufficiently far away from the interceptor 
and the control gains are constant. The Simulink model is “EndGame_Sim1s.mdl”, shown in Figure 
6.2.3, and it is located in the same “End-Game/ Continuous” subfolder. 



 

Figure 6.2.3 Steady-State Simulation Model “EndGame_Sim1s.mdl” 



The plant model is the Flixan generated system “Simple End-Game Model” in file “end_game.m”. The 
LQG control system calculated by Flixan is: “LQG Control Design for Simple End-Game Model” in file 
“Control.m”. It is the dynamic system shown in Figure 6.2.4, consisting of plant model parameters (A, 
B, C), the steady-state feedback gain Kc and the Kalman-Filter gain Kf. The two systems and matrices 
are loaded into Matlab by executing the m-file “init.m”, which also initializes the state-vector x0. 
Notice, that this configuration cannot be used in the time-varying case because Kc(t) is varying. 

 

Figure 6.2.4 Steady-State LQG Output Feedback Controller/ Plant Interconnection 

We can use this simulation model to calculate the system’s response to an accelerating target 
disturbance, as shown in Figure 6.2.5.  

 
Figure 6.2.5 Interceptor Acceleration is responding to Noisy Target Accelerations 



 
Figure 6.2.6 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

This simulation is also used to calculate the system’s response to initial position and velocity errors 
with an accelerating target, see Figure 6.2.6. Notice that the system’s response at steady-state is 
intentionally slow in order to save propellant since the target is still far away. This causes noticeable 
position error due to target acceleration. 



6.2.4.3 Continuous Simulation with Time Varying Control Gains  

The continuous simulation model in Figure 6.2.7 is in file “EndGame_Sim2s.mdl”. It uses time-varying 
gains as a function of time-to-go which are loaded into Matlab look-up tables from file “Gains.dat”. 
They were calculated by the Flixan Transient LQR program as already mentioned. The tgo is calculated 
from the relative axial position, velocity and acceleration and used to look-up the gains which 
increase as tgo gets shorter resulting into an exponentially increasing control bandwidth. 

 

The Kalman-Filter and the control system are separate subsystems in this simulation. The Kalman-Filter is now 
used to estimate the four state variables from the relative position and the accelerometer measurements. The 
estimated states are multiplied with the four time varying gains to produce the acceleration command. The 
gains are functions of tgo which is calculated from the relative x-axis acceleration, velocity and range to go. 



 

Figure 6.2.7 Simulation Model “EndGame_Sim2s.mdl” that uses Time-Varying Gains 



 

Figure 6.2.8 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

Figure 6.2.8 shows the response of the time-varying control system to non-zero initial conditions 
versus time-to-go, beginning 8.5 sec before impact when the gains are still at steady state. Beginning 
with initial position and velocity errors 500 (feet) and 100 (ft/sec) respectively, the interceptor 
(orange) accelerates in order to bring the final position and velocity errors very close to zero at 
impact. 



6.2.5. Discrete-Time Analysis 
 
The discrete-time analysis is similar. The files are located in subfolder “LQG\Examples\End-
Game\Discrete”. It includes the input file “End_Game_z.Inp”, shown below, that contains input data 
for the design programs. That is, for the discrete steady-state LQR control, the discrete time-varying 
state-feedback LQR, the discrete Kalman-Filter, and for the discrete steady-state dynamic output-
feedback LQG design. The input file also includes a batch set for fast data processing and datasets for 
Matlab conversions. The systems filename “End_Game_z.Qdr” contains the End-Game dynamic 
model “Simple End-Game Model, Z-Transform”, which is a z-transformation of the continuous model 
“Simple End-Game Model” described in Equation 6.2.2, discretized at 40 (msec) sampling period. The 
systems file also contains the control design matrices: Qc, Rc, and P1, the Kalman-Filter design 
matrices Qmn, Rmn, the control gain Kc and the Kalman-Filter gain Kf which are generated by the Flixan 
LQR design program.  
 
BATCH MODE INSTRUCTIONS ...............                                                              
Batch for preparing End-Game Control design Models 
! This batch Generates LQR State-Feedback, Kalman-Filter and Output 
! Feedback Dynamic Controller 
Retain System    : Simple End-Game Model   
Retain Matrix    : State Weight Matrix Qc (4x4)  
Retain Matrix    : Control Weight Matrix Rc     
Retain Matrix    : Terminal State Weight Matrix P1 (4x4)     
Retain Matrix    : Measurement Noise Matrix Rmn (2x2)    
Retain Matrix    : Process Noise Matrix Qpn (4x4)       
Retain Matrix    : Input Noise Matrix G      
Retain Matrix    : Process Noise Matrix Qpn1       
! 
S-Z-Transform    : Simple End-Game Model, Z-Transform 
LQR Control Des  : LQR Control Design for Discrete End-Game Model   
State Estimator  : Kalman-Filter Design 2 for Discrete End-Game Model    
LQG Control Des  : LQG Control Design for Discrete End-Game Model  
Transient LQR    : Transient LQR Design for Discrete End-Game Model  
! 
To Matlab Format : Simple End-Game Model, Z-Transform 
To Matlab Format : LQG Control Design for Discrete End-Game Model  
To Matlab Format : LQR State-Feedback Control for Discrete End-Game Model 
To Matlab Format : Kalman-Filter Estimator 2 for Discrete End-Game Model 
------------------------------------------------------------------------------------------------------- 
TRANSFORM A SYSTEM (S-Z-W) ..... (Z system title, Comments, S-System title, Transform) 
Simple End-Game Model, Z-Transform 
! Discretize the Continuous End-Game Model at dT=0.04 sec Using the  
! S to Z Transformation 
! 
Simple End-Game Model   
From S-plane to Z-plane using the Z-Transform, dT= 0.04 
---------------------------------------------------------------------------------------------------- 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN          
LQR Control Design for Discrete End-Game Model                                                                                                                                           
! Design the Discrete Steady-State-Feedback Matrix Kc using the  
! Output Criteria Matrix C= Identity 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                  
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                
Discrete LQR Solution Using Assymptotic Method                                                                                                                                                           
LQR State-Feedback Control Gain Matrix Kc                  LQR State-Feedback Control for Discrete End- 
------------------------------------------------------------------------------------------------------- 
  



KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design for Discrete End-Game Model                                                                                                                                         
! Design the Discrete Kalman-Filter Gain Matrix Kf using the 
! Process Noise Matrix G 
! 
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model, Z-Transform                                                                                                       
Input Process Noise Matrix is Matrix   G                   Input Noise Matrix G                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn1                                                                                                       
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                       
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator for Discrete End-  
------------------------------------------------------------------------------------------------------- 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design 2 for Discrete End-Game Model                                                                                                                                              
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model, Z-Transform                                                                                                            
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn (4x4)                                                                                                                
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                            
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator 2 for Discrete End-  
------------------------------------------------------------------------------------------------------- 
DYNAMIC OUTPUT FEEDBACK LQG CONTROL DESIGN                                                                                                                                                               
LQG Control Design for Discrete End-Game Model                                                                                                                                                           
! Combine State-Feedback with KF Gain to Design a Linear Quadratic  
! Gaussian Control System for the Plant: Simple End-Game Model, Z-Transform  
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                          
State-Feedback (Kc) is Gain Matrix   : Kc                  LQR State-Feedback Control for Discrete End-
Game Model                                                                                   
Kalman-Filter Estim Kf is Gain Matrix: Kf                  Kalman-Filter Estimator 2 for Discrete End-
Game Model                                                                                           
------------------------------------------------------------------------------------------------------- 
TRANSIENT LQR CONTROL DESIGN WITH TIME-VARYING GAINS                                                                                                                                                     
Transient LQR Design for Discrete End-Game Model                                                                                                                                                       
! To Generate Time-Varying State-Feedback Gain Kc(t) 
! as a Function of Time-to-Go, in File: Gains.dat 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                       
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)     
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc           
Terminal State Penalty Weigh P1 Matrix P1                  Terminal State Weight Matrix P1 (4x4)                                                                                                        
Discrete LQR Solution, Final Time (Tf) in (sec)             20.0                                                                                                                                
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Simple End-Game Model, Z-Transform 
System 
end_game 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQG Control Design for Discrete End-Game Model  
System 
Control 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator 2 for Discrete End-Game Model    
Matrix Kf 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Discrete End-Game Model     
Matrix Kc 
------------------------------------------------------------------------------------------------------- 

 
The discrete LQR transient design program also calculates the time varying state-feedback gain Kc(t) 
as a function of time-to-go. It requires the weight matrices: Qc, Rc, and P1, and the initial time-to-go 
(20 sec). The gains versus time are saved in file “Gains.dat” which is used as a look-up table in the 
simulation. The discrete end-game dynamic model is saved in file “end_game.m”, and the discrete 
steady-state output-feedback controller is saved in “control.m” for Matlab analysis. The gain matrices 
Kc and Kf are also saved and loaded into Matlab. Two discrete Simulink models are included for 
analysis: a steady-state model, and a time-varying model, both running at 40 msec sampling. 



 
6.2.5.1 Discrete Steady-State 
Simulation 
 
The steady-state model is used to analyze the 
system when the target is sufficiently far away 
from the interceptor and the control gains are 
constant. The Simulink model is “EndGame-
Sim1z.mdl”, shown in Figure 6.2.9, and it is 
located in “LQG\ Examples\End-Game\ Discrete” 
subfolder.

 

Figure 6.2.9 Discrete Steady-State Simulation Model “EndGame_Sim1z.mdl” 



 

Figure 6.2.10 Discrete System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

Figure 6.2.10 shows discrete system’s response to a randomly accelerating target. The dynamic 
model is initialized at some arbitrary non-zero relative position and velocity errors. The interceptor 
acceleration responds to the target’s average acceleration and the relative position and velocity are 
considerably reduced. Notice that this is steady-state condition where the interceptor’s response is 
slow. The engagement becomes a lot more dynamic when tgo approaches zero. 



6.2.5.2 Discrete Simulation with Time Varying Gains  

The discrete simulation model in Figure 6.2.11 is in file “EndGame_Sim2z.mdl”. It uses time-varying gains 
as a function of time-to-go loaded from file “Gains.dat”, and it is very similar to the continuous model 
“EndGame_Sim2s.mdl”. The gains are calculated from the discrete Transient LQR program as already 
described. The gains are functions of tgo which is calculated from the relative axial position, velocity and 
acceleration and they increase as the vehicle approaches the target and tgo becomes shorter. The discrete 
Kalman-Filter estimates the four state variables from the relative position and the accelerometer 
measurements. The response of the discrete system is similar to the continuous model’s response. Both, 
relative position and relative velocity are reduced to almost zero at impact, as shown in Figure 6.2.12. 

 



 

Figure 6.2.11 Discrete Simulation Model “EndGame_Sim2z.mdl” that uses Time-Varying Gains 

 

Figure 6.2.12 Discrete System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 



 

 

 
In this example we analyze a cruising missile that has a small wing to provide lift and a fixed thrust 
engine that does not gimbal nor throttle. The missile is released horizontally from an aircraft and it 
climbs at high altitudes. It is controlled by three aero-surfaces located in the tail section consisting of: 
a vertical rudder mainly for yaw control and two horizontal rotating fins for pitch and roll control, see 
Figure 6.3.1. There are no control surfaces on the wing. Since the engine is not gimbaling, it is the 
wing in combination with the elevon aerosurfaces that provides the necessary lift for the vehicle to 
climb. The attitude, rate, and acceleration are measured by an Inertial Measurements Unit (IMU) 
located in the front section. The angles of attack and sideslip are not measured relative to the wind 
but the flight path angle γ and the heading direction ξ are inertially estimated from navigation. We 
will use Flixan to generate dynamic models at a critical flight condition, which is: Mach 2.5, 10 
degrees of angle of attack, and high dynamic pressure of 1220 psf. We will design LQR control laws 
for the pitch and lateral dynamics separately, and analyze stability and performance using Matlab. 

  



6.3.1 Flight Control System Description 

Figure 6.3.1 shows the missile with the wing and the three tail aerosurfaces consisting of a vertical 
rudder for yaw control, an elevon for pitch control produced by equally rotating the left and right fins 
in the same direction, and an aileron for roll control produced by rotating the left and right fins 
differentially. The missile is released horizontally from an aircraft, climbs to orbital altitude and tracks 
a pre-calculated flight path and heading directions mainly along the direction it is released.  

 

Figure 6.3.1 Missile Configuration showing the Aerosurfaces, Wing, CG, and Sensor Locations. 

 
The thrust is not used for control but it produces an acceleration which is captured in the vehicle data 
and model. The purpose of the flight control system is to stabilize the vehicle and to track a 
predesigned trajectory path in both: longitudinal gamma-tracking, and in the lateral heading direction 
tracking. Since the vehicle is perfectly symmetric the analysis will be separated in pitch and lateral 
control design and analysis that will be performed in separate subdirectories. The pitch vehicle model 
is in the input file “Pitch_LQR_Des.Inp” which is located in directory “Flixan\Control Analysis\LQG\ 
Examples\Missile Control Design\Pitch LQR”. The lateral vehicle model is in the input file 
“Later_LQR_Des.Inp” which is located in directory “Flixan\Control Analysis\LQG\Examples\ Missile 
Control Design\Lateral LQR”. Pitch and Lateral control design models will be created for LQR state-
feedback and we assume that all states x are available for feedback.  



The design models will be augmented by including the aerosurface actuators and integrals of some of 
the states. The augmented design models improve speed of response and the tracking performance 
of the control system. We will also create pitch and lateral models for control analysis and 
simulations. The Flixan program will be used to perform dynamic modeling and control design and 
Matlab for the simulations. The dynamic models and control gains are converted from the system 
files and loaded into Matlab for analysis.  

Note that in this example the incidence angles α and β, which are used to synthesize the flight-path 
and heading directions, do not see the effects of a wind-gust directly because γ and ξ are estimated 
from navigation and they do not represent motion relative to the moving air mass. This is introduced 
in the flight vehicle input data by a flag label “NoWind Alpha” in the flags line, to indicate the type of 
(α, β) measurement. It means that the wind velocity components wgust and vgust are not included in 
the α and β calculations, only the vehicle velocities w and v. A wind-gust, however, will produce 
forces and moments on the vehicle and it will affect its motion, but the gust itself is not seen directly 
in the output as it would be if it was an air-data probe, only its effect on the vehicle will be 
observable. 

  



6.3.2.1 Longitudinal Control Design and Analysis 

The input file for the longitudinal axis design is “Pitch_LQR_Des.Inp” located in subdirectory “Control 
Analysis\LQG\Examples\Missile Control Design\Pitch LQR”. It contains several Flixan datasets that 
generate plant models and perform steady-state LQR state-feedback control design. They are 
processed by a batch set located at the top of the file. The batch first retains the control weight 
matrices Qc and Rc from getting erased in systems file “Pitch_LQR_Des.Qdr”. Then it generates the 
vehicle model “Missile with Wing, Mach: 2.5, Qbar: 1220” that includes both pitch and lateral 
dynamics. The initial pitch design model is then extracted from the above system and saved as 
“Missile with Wing Pitch Design Model”. It consists of one input, Elevon deflection in (rad), and 3 
outputs: pitch attitude, rate, and angle of attack in radians. A second longitudinal system is also 
created with title: “Missile with Wing Pitch Analysis Model”. It includes a wind-gust velocity input in 
(feet/sec) and other outputs, and it will be used in simulations. The direction of the gust is 
perpendicular to the vehicle x-axis, and along the –z direction to excite the pitch dynamics, as defined 
in the vehicle input data by the wind azimuth and elevation angles (0⁰ and 90⁰). 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch for Designing Missile with Wing Pitch Models and Gains 
! 
! This batch set creates the Design and Analysis models for a 
! Missile with Wing at 2.5 Mach, and performs LQR design.  
! The Missile has a fixed Thrust and it is controlled by 3 Aerosurfaces 
! 
!                  Control design Matrices 
Retain Matrix    : State Weight Matrix Qc (5x5)  
Retain Matrix    : Control Weight Matrix Rc  
! 
Flight Vehicle   : Missile with Wing, Mach: 2.5, Qbar: 1220 
System Modificat : Missile with Wing Pitch Design Model  
System Modificat : Missile with Wing Pitch Analysis Model  
Transf-Functions : Actuator: 34/(s+34) 
Transf-Functions : Integrator     
System Connection: Augmented Pitch Design Model 
System Modificat : Augmented Pitch Design Model-2 
LQR Control Des  : LQR Control Design for Augmented Design Model 
!                  Convert to Matlab 
To Matlab Format : LQR State-Feedback Control for Augmented Design Model 
To Matlab Format : Missile with Wing Pitch Analysis Model  
------------------------------------------------------------------------------------------------------------------ 
  



FLIGHT VEHICLE INPUT DATA ...... 
Missile with Wing, Mach: 2.5, Qbar: 1220 
! Rigid-Body Missile controlled by 3 aerosurfaces. The engine has fixed thrust 
! and does not gimbal 
Body Axes Output, Attitude=Euler Angles, NoWind Alpha 
  
Vehicle Mass (lb-sec^2/ft), Gravity Accelerat. (g) (ft/sec^2), Earth Radius (Re) (ft)    :   1219.1, 32.07,  
Moments and products of Inertias Ixx, Iyy, Izz, Ixy, Ixz, Iyz, in (lb-sec^2-ft)          :   0.4063E+04 0.1654E+06  
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet)        :   26.19, 0.0,  -0.15 
Vehicle Mach Number, Velocity Vo (ft/sec), Dynamic Pressure (psf), Altitude (feet)       :   2.5, 2427.4,1220.6,        
Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax,Ay,Az (ft/sec^2)         :   60.0, 60.0, 0.0, 10.5 
Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec)                         :   10.5, 0.0, 0.0, 0.0     
Vehicle Attitude Euler Angles, Phi_o,Thet_o,Psi_o (deg), Body Rates Po,Qo,Ro (deg/sec)   :   0.0,39.6,0.0, 0.0, 0.132,   
Wind Gust Vel wrt Vehi (Azim & Elev) angles (deg), or Force(lb), Torque(ft-lb), locat:xyz:   Gust  00.0  90.0     
Surface Reference Area (feet^2), Mean Aerodynamic Chord (ft), Wing Span in (feet)        :   145.4, 22.0, 22.0     
Aero Moment Reference Center (Xmrc,Ymrc,Zmrc) Location in (ft), {Partial_rho/ Partial_H} :   26.19, 0.0, -0.238, 0.0  
Aero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_q,Ca_bet}:   0.1, 0.002, 0.0, 0.0,  
Aero Force Coeffic/Derivat (1/deg), Along Y, {Cyo,Cy_bet,Cy_r,Cy_alf,Cy_p,Cy_betdot,Cy_V}:   0.0, -0.023, 0.0, 0.0,  
Aero Force Coeff/Deriv (1/deg), Along Z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}:  -0.1, -0.032, 0.0, 0.0,      
Aero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl_betdot, Cl_p, Cl_r, Cl_alfa}:   0.0, -0.0017,0.0,-0.243,    
Aero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm_alfdot,Cm_bet,Cm_q,PCm/PV,PCm/Ph}:  -0.037,-0.011, 0.0,0.0,    
Aero Moment Coeffic/Derivat (1/deg), Yaw : {Cno, Cn_beta, Cn_betdot, Cn_p, Cn_r, Cn_alfa}:   0.0, 5.6e-4, 0.0,0.1388,   
 
Number of Control Surfaces, With or No TWD (Tail-Wags-Dog and Hinge Moment Dynamics) ?   :  3   No TWD 
 
Control Surface No:  1                                                                     Elevator     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0  30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0  0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0  0.0  0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0  0.0  0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 -0.0 -0.0087, 0.00   
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  0.0 -0.0072 0.0  0.0        
 
Control Surface No:  2                                                                     Aileron     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0  -30.0 0.0       
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0   0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0   0.0    0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0    0.0     0.0   
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 0.0011 0.0  0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}: -6.54e-4 0.0  -0.0014  0.0       
 
Control Surface No:  3                                                                     Rudder     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0 0.0 0.0 0.0  0.0      
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0 0.0 0.0 0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0 0.0 0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00001 0.0034 0.0 0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  5.9456e-4 0.0 -0.0035         
 
Number of Bending Modes                                                                  :  0 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Pitch Design Model                                                
Missile with Wing, Mach: 2.5, Qbar: 1220                     
! The initial pitch design system is extracted from the coupled RB system above   
!                                    
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   
Extract States :   3   4   7 
Extract Outputs:   3   4   7 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Pitch Analysis Model                                                
Missile with Wing, Mach: 2.5, Qbar: 1220                   
! The Pitch Analysis/ Simulation system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   4 
Extract States :   3   4   7   9  10 
Extract Outputs:   3   4   7   9  10  14 
---------------------------------------------------------------------------------------------------------------------- 

 
The system modification datasets extract the longitudinal variables from the coupled system “Missile 
with Wing, Mach: 2.5, Qbar: 1220” and save them in file “Pitch_LQR_Des.Qdr” as separate systems.  

  



In the longitudinal direction we would like the estimated flight path angle (γ) to follow a pre-
calculated flight path (γcomd). The original design plant, however, is not equipped to track γ and to 
produce an efficient control design. We must create, therefore, and regulate a “γ−integral” state and 
include it in the design model. It is also good idea to include a simple actuator model in the plant 
because it introduces more plant information in the design which makes the control system more 
efficient with less phase-lag. The two additional variables γ and δelevon can easily be included in the 
LQR optimization because they are both measurable for feedback. 

 

Figure 6.3.2 Augmented Longitudinal Design Plant for LQR Control Design 

Figure 6.3.2 shows the augmented plant for the longitudinal LQR control design. The following 
interconnection dataset combines the 3 subsystems and generates the augmented system, which is: 
“Augmented Pitch Design Model”. The order of the states, however, is not the same as the outputs 
and it is modified for convenience to “Augmented Pitch Design Model-2” which makes the C matrix 
equal to the identity I5. 

  



INTERCONNECTION OF SYSTEMS ..... 
Augmented Pitch Design Model 
! Create a 5-State Augmented Model that Includes Gamma-integral and  
! Elevon deflection in the state vector for Pitch Control Design 
! 
Titles of Systems to be Combined    
Title 1 Actuator: 34/(s+34) 
Title 2 Missile with Wing Pitch Design Model  
Title 3 Integrator 
SYSTEM INPUTS TO SUBSYSTEM  1                                                          to Actuator 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                   Delta Command 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                       Vehicle Plant 
System Output  1 from Subsystem  2, Output  1, Gain= 1.0                               theta 
System Output  2 from Subsystem  2, Output  2, Gain= 1.0                               q - pitch rate 
System Output  3 from Subsystem  2, Output  3, Gain= 1.0                               alpha 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  3                                                       Integrator 
System Output  4 from Subsystem  3, Output  1, Gain= 1.0                               gamma-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                       Actuator 
System Output  5 from Subsystem  1, Output  1, Gain= 0.0294118                         delta-elevon 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                Actuator to Vehicle                                          
Subsystem  1, Output  1 to Subsystem  2, Input  1, Gain=   1.0000                      Elevon deflect           
...................................................................... 
SUBSYSTEM NO  2 GOES TO SUBSYSTEM NO  3                                                Vehicle to Integrator                                     
Subsystem  2, Output  1 to Subsystem  3, Input  1, Gain=   1.0000                      Gamma= Theta 
Subsystem  2, Output  3 to Subsystem  3, Input  1, Gain=  -1.0000                            -Alpha    
...................................................................... 
Definitions of Inputs  =   1 
Elevon Deflection Command (delta) rad 
 
Definitions of Outputs =   5 
Pitch Attitude, theta  (rad) 
Pitch Rate, q (rad/sec) 
Angle of Attack, alpha (rad) 
Gamma-Integral (rad-sec) 
Elevon Deflection, delta-elev (rad) 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Actuator: 34/(s+34) 
! First order Actuator 34 (rad/sec) Bandwidth 
Continuous 
TF. Block #  1 34/(s+34)                                   Order of Numer, Denom=  0  1 
Numer 0.0         34.0 
Denom 1.0         34.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
Definitions of Inputs  =   1 
Delta Command                                                                 
  
Definitions of Outputs =   1 
Delta Out                                                 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
Continuous 
TF. Block #  1  1/s                                       Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
------------------------------------------------------------------------------- 
  



CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Augmented Pitch Design Model-2 
Augmented Pitch Design Model 
! Rearange the Order of States to be the same as the Outputs 
! Makes C=Identity 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract States :   2   3   4   5   1 
Extract Outputs:   1   2   3   4   5 
---------------------------------------------------------------------------------------------------- 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Design Model                                                                                                                                                          
Plant Model Used to Design the Control System from:      Augmented Pitch Design Model-2                                                                                                                        
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc5               State Weight Matrix Qc (5x5)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc                LQR State-Feedback Control for Augmented Design Model                                                                                       
--------------------------------------------------------------------------------------------------------------------- 
 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Augmented Design Model 
Matrix Kc 
-------------------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Missile with Wing Pitch Analysis Model  
System 
Vehi_pitch.m 
-------------------------------------------------------------------------------------------------------------------- 
END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END- 

 
The dataset “LQR Control Design for Augmented Design Model” performs the LQR control design on 
the plant “Augmented Pitch Design Model-2”. It uses the C matrix for criteria which is the identity 
matrix and the (5x5) weight matrix Qc to penalize the states individually. The scalar Rc penalizes the 
Elevon control. The weight matrices are already set in the systems file. The LQR program generates 
the (1x5) state-feedback matrix Kc that stabilizes the plant by closing the control loop between the 
state vector and the Elevon input. The matrix is also saved in the systems file under the title “LQR 
State-Feedback Control for Augmented Design Model”. The matrix Kc and the pitch analysis model are 
also saved in Matlab format as “Kc.mat” and “vehi_pitch.m” respectively for further analysis. 

6.3.2.2 Longitudinal Simulation 

The simulation model “Pitch_Sim.mdl” in Figure 6.3.3, is in folder “Flixan\Control Analysis\LQG\ 
Examples\Missile Control Design\Pitch LQR”. It has the 5-state-feedback loop closed via matrix Kc 
which includes feedback from γ-integral and δelevon in addition to the feedback from the original 
vehicle states (θ, q, α). In the simulation Figure 6.3.4 the vehicle is commanded to perform 1⁰ 
increase in γ, and in Figure 6.3.5 it is excited by an upward wind-gust velocity impulse. 



 

Figure 6.3.3 Longitudinal Axes Closed-Loop Simulation Model “Pitch_Sim.mdl” 

 

Figure 6.3.4 Flight Path Angle Responds to 1 degree Gamma Command 



 

Figure 6.3.4b Missile Responds to the Gamma Command. Negative Elevon produces a Positive Pitch Rate, Negative 
(upwards) Acceleration and the Missile is Steadily Climbing at Higher Altitudes 



 

Figure 6.3.5 The Missile is excited by a Wind-Gust from below that causes Negative pitch and rate and Z-acceleration. 
The Elevon Responds with Negative Deflection to Counteract the Negative Pitch Rate 

  



6.3.2.3 Stability Analysis 

The system stability is analyzed in the frequency domain by calculating the Nichols plot using the 
open-loop Simulink model “Open_Pitch.mdl” shown in Figure 6.3.6. The script file “frequ.m” 
calculates the frequency response across the opened loop. The model includes the first order 
actuator and a low-pass filter. The loop is broken between the low-pass filter output and the actuator 
input. The Nichols plot in Figure 6.3.7 shows the control system’s stability margin. 

 

Figure 6.3.6 Open-Loop Model “Open_Pitch.mdl” for Pitch Stability Analysis 

  

Figure 6.3.7 The Nichols Plot Shows that the LQR Control System has Plenty of Stability Margin in Pitch. The System also 
has a Short-Period Mode at 3.85 (rad/sec) 



6.3.3.1 Lateral Control Design and Analysis 

The input file for the coupled Roll and Yaw axes design is “Later_LQR_Des.Inp” located in subdirectory 
“Control Analysis\LQG\Examples\Missile Control Design\Lateral LQR”. It contains several Flixan 
datasets that generate plant models and perform steady-state LQR state-feedback control design. 
They are processed by a batch set located at the top of the file. The batch first retains the control 
weight matrices Qc and Rc from getting erased in systems file “Later_LQR_Des.Qdr”. Then it generates 
the vehicle model “Missile with Wing, Mach: 2.5, Qbar: 1220” that includes both pitch and lateral 
dynamics. The initial lateral design model is then extracted from the above system and saved as 
“Missile with Wing Lateral Design Model”. It consists of two inputs, Aileron and Rudder deflections in 
(rad), and 5 outputs: roll attitude and rate, yaw attitude and rate and the angle of sideslip in radians. 
A second longitudinal system is also created with title: “Missile with Wing Lateral Analysis Model”. It 
includes a wind-gust velocity input in (feet/sec) and other outputs, and it will be used in simulations. 
The direction of the gust is different than the pitch model. It is now perpendicular to the vehicle x-
axis, and along the –y direction to excite the roll and yaw dynamics, as defined in the vehicle input 
data by the wind azimuth and elevation angles (90⁰ and 90⁰). 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch for Designing Lateral Models and Gains for a Missile with Wing  
! 
! This batch set creates the Design and Analysis models for a 
! Missile with Wing at 2.5 Mach, and performs LQR design.  
! The Missile has a fixed Thrust and it is controlled by 3 Aerosurfaces 
! 
!                  Control Design Matrices 
Retain Matrix    : State Weight Matrix Qc (9x9)  
Retain Matrix    : Control Weight Matrix Rc (2x2)  
! 
Flight Vehicle   : Missile with Wing, Mach: 2.5, Qbar: 1220    
System Modificat : Missile with Wing Lateral Design Model   
System Modificat : Missile with Wing Lateral Analysis Model    
Transf-Functions : Actuator: 34/(s+34) 
Transf-Functions : Integrator     
System Connection: Augmented Lateral Design Model 
System Modificat : Augmented Lateral Design Model-2 
LQR Control Des  : LQR Control Design for Augmented Lateral Design Model 
! 
!                  Convert to Matlab 
To Matlab Format : Missile with Wing Lateral Analysis Model  
To Matlab Format : LQR State-Feedback Control for Augmented Lateral Design Model 
------------------------------------------------------------------------------------------- 
  



FLIGHT VEHICLE INPUT DATA ...... 
Missile with Wing, Mach: 2.5, Qbar: 1220 
! Rigid-Body Missile controlled by 3 aerosurfaces. The engine has fixed thrust 
! and does not gimbal 
Body Axes Output, Attitude=Euler Angles, NoWind Alpha 
  
Vehicle Mass (lb-sec^2/ft), Gravity Accelerat. (g) (ft/sec^2), Earth Radius (Re) (ft)    :   1219.1, 32.07,  
Moments and products of Inertias Ixx, Iyy, Izz, Ixy, Ixz, Iyz, in (lb-sec^2-ft)          :   0.4063E+04 0.1654E+06  
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet)        :   26.19, 0.0,  -0.15 
Vehicle Mach Number, Velocity Vo (ft/sec), Dynamic Pressure (psf), Altitude (feet)       :   2.5, 2427.4,1220.6,        
Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax,Ay,Az (ft/sec^2)         :   60.0, 60.0, 0.0, 10.5 
Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec)                         :   10.5, 0.0, 0.0, 0.0     
Vehicle Attitude Euler Angles, Phi_o,Thet_o,Psi_o (deg), Body Rates Po,Qo,Ro (deg/sec)   :   0.0,39.6,0.0, 0.0, 0.132,   
Wind Gust Vel wrt Vehi (Azim & Elev) angles (deg), or Force(lb), Torque(ft-lb), locat:xyz:   Gust  90.0  90.0     
Surface Reference Area (feet^2), Mean Aerodynamic Chord (ft), Wing Span in (feet)        :   145.4, 22.0, 22.0     
Aero Moment Reference Center (Xmrc,Ymrc,Zmrc) Location in (ft), {Partial_rho/ Partial_H} :   26.19, 0.0, -0.238, 0.0  
Aero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_q,Ca_bet}:   0.1, 0.002, 0.0, 0.0,  
Aero Force Coeffic/Derivat (1/deg), Along Y, {Cyo,Cy_bet,Cy_r,Cy_alf,Cy_p,Cy_betdot,Cy_V}:   0.0, -0.023, 0.0, 0.0,  
Aero Force Coeff/Deriv (1/deg), Along Z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}:  -0.1, -0.032, 0.0, 0.0,      
Aero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl_betdot, Cl_p, Cl_r, Cl_alfa}:   0.0, -0.0017,0.0,-0.243,    
Aero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm_alfdot,Cm_bet,Cm_q,PCm/PV,PCm/Ph}:  -0.037,-0.011, 0.0,0.0,    
Aero Moment Coeffic/Derivat (1/deg), Yaw : {Cno, Cn_beta, Cn_betdot, Cn_p, Cn_r, Cn_alfa}:   0.0, 5.6e-4, 0.0,0.1388,   
 
Number of Control Surfaces, With or No TWD (Tail-Wags-Dog and Hinge Moment Dynamics) ?   :  3   No TWD 
 
Control Surface No:  1                                                                     Elevator     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0  30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0  0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0  0.0  0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0  0.0  0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 -0.0 -0.0087, 0.00   
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  0.0 -0.0072 0.0  0.0        
 
Control Surface No:  2                                                                     Aileron     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0  -30.0 0.0       
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0   0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0   0.0    0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0    0.0     0.0   
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 0.0011 0.0  0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}: -6.54e-4 0.0  -0.0014  0.0       
 
Control Surface No:  3                                                                     Rudder     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0 0.0 0.0 0.0  0.0      
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0 0.0 0.0 0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0 0.0 0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00001 0.0034 0.0 0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  5.9456e-4 0.0 -0.0035         
 
Number of Bending Modes                                                                  :  0 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Lateral Design Model                                                                                             
Missile with Wing, Mach: 2.5, Qbar: 1220                  
! The initial Lateral Design system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   2   3    
Extract States :   1   2   5   6   8 
Extract Outputs:   1   2   5   6   8   
------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Lateral Analysis Model                                                                                             
Missile with Wing, Mach: 2.5, Qbar: 1220                 
! The lateral Analysis/ Simulation system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   2   3   4 
Extract States :   1   2   5   6   8 
Extract Outputs:   1   2   5   6   8  11  13 
------------------------------------------------------------------------------------------------------- 

The system modification datasets extract the lateral variables from the coupled system “Missile with 
Wing, Mach: 2.5, Qbar: 1220” and save them in file “Later_LQR_Des.Qdr” as separate systems.  

  



In the lateral direction we would like to command and track the heading direction angle (ξ). The 
heading angle can be controlled by a coordinated roll and yaw command that can be achieved with 
good roll and yaw attitude tracking performance. We introduce therefore two additional states in the 
design model: φ-integral and ψ-integral because we want to be able to command them 
independently in order to minimize the β-transients. It is also good idea to include simple aileron and 
rudder actuator models in the synthesis model because it introduces more plant information in the 
design and makes the control system more efficient with less phase-lag. We introduce therefore two 
additional states in the state-vector: δaileron and δrudder, a total of 9 states. This will create a (2x9) state-
feedback LQR gain matrix. The additional state variables φ-integral, ψ-integral and δaileron and δrudder 
can easily be included in the LQR optimization because they are all measurable for feedback. 

 

 

Figure 6.3.8 Augmented Lateral Design Plant for LQR Control Design 

Figure 6.3.8 shows the augmented plant for the Roll/ Yaw LQR control design. The interconnection 
dataset below combines the 5 subsystems together and generates the augmented system, which is: 
“Augmented Lateral Design Model”. The sequence of the states, however, is not the same as the 
outputs sequence and it is modified by reordering the states to “Augmented Lateral Design Model-2” 
which conveniently makes the C matrix equal to the identity I9. 

  



INTERCONNECTION OF SYSTEMS ..... 
Augmented Lateral Design Model 
! Create a 9-State Augmented Model that Includes Phi-integr, Psi-integr,  
! Aileron and Rudder deflections in the state vector for Lateral Control Design 
! 
Titles of Systems to be Combined    
Title 1 Actuator: 34/(s+34) 
Title 2 Actuator: 34/(s+34) 
Title 3 Missile with Wing Lateral Design Model  
Title 4 Integrator 
Title 5 Integrator 
SYSTEM INPUTS TO SUBSYSTEM  1                                                          to Ailern Actuator 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                   Delta-ailer Command 
.............................................................................. 
SYSTEM INPUTS TO SUBSYSTEM  2                                                          to Rudder Actuator 
System Input  2 to Subsystem  2, Input  1, Gain= 1.0                                   Delta-ruddr Command 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  3                                                       Vehicle Plant 
System Output  1 from Subsystem  3, Output  1, Gain= 1.0                               Phi 
System Output  2 from Subsystem  3, Output  2, Gain= 1.0                               p - roll rate 
System Output  3 from Subsystem  3, Output  3, Gain= 1.0                               Psi 
System Output  4 from Subsystem  3, Output  4, Gain= 1.0                               r - yaw rate 
System Output  5 from Subsystem  3, Output  5, Gain= 1.0                               Beta 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  4                                                       Integrator 
System Output  6 from Subsystem  4, Output  1, Gain= 1.0                               Phi-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  5                                                       Integrator 
System Output  7 from Subsystem  5, Output  1, Gain= 1.0                               Psi-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                       Actuator 
System Output  8 from Subsystem  1, Output  1, Gain= 0.0294118                         delta-aileron 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                       Actuator 
System Output  9 from Subsystem  2, Output  1, Gain= 0.0294118                         delta-rudder 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  3                                                Ailer-Actuat to Vehicle                                          
Subsystem  1, Output  1 to Subsystem  3, Input  1, Gain=   1.0000                      Aileron-deflect           
...................................................................... 
SUBSYSTEM NO  2 GOES TO SUBSYSTEM NO  3                                                Ruddr-Actuat to Vehicle                                          
Subsystem  2, Output  1 to Subsystem  3, Input  2, Gain=   1.0000                      Rudder-deflect           
...................................................................... 
SUBSYSTEM NO  3 GOES TO SUBSYSTEM NO  4                                                Vehicle to Integrator-4                                     
Subsystem  3, Output  1 to Subsystem  4, Input  1, Gain=   1.0000                      Phi  
...................................................................... 
SUBSYSTEM NO  3 GOES TO SUBSYSTEM NO  5                                                Vehicle to Integrator-4                                     
Subsystem  3, Output  3 to Subsystem  5, Input  1, Gain=   1.0000                      Psi  
...................................................................... 
Definitions of Inputs  =   2 
Aileron Deflection Command (delta) rad 
Rudder  Deflection Command (delta) rad 
 
Definitions of Outputs =   9 
Roll Attitude, Phi (rad) 
Roll Rate, p (rad/sec) 
Yaw  Attitude, Psi (rad) 
Yaw  Rate, r (rad/sec) 
Angle of Sideslip beta (rad) 
Phi-Integral (rad-sec) 
Psi-Integral (rad-sec) 
Aileron Deflection, delta-ailer (rad) 
Rudder Deflection, delta-rudder (rad) 
------------------------------------------------------------------------------- 

  



SYSTEM OF TRANSFER FUNCTIONS ... 
Actuator: 34/(s+34) 
! First order Actuator 34 (rad/sec) Bandwidth 
Continuous 
TF. Block #  1 34/(s+34)                                         Order of Numer, Denom=  0  1 
Numer 0.0         34.0 
Denom 1.0         34.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
Definitions of Inputs  =   1 
Delta Command                                                                 
  
Definitions of Outputs =   1 
Delta Out                                                 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
Continuous 
TF. Block #  1  (1/s)                                           Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Augmented Lateral Design Model-2 
Augmented Lateral Design Model 
! Rearange the Order of States to be the same as the Outputs 
! Makes C=Identity 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract States :   3   4   5   6   7   8   9   1   2 
Extract Outputs:   1   2   3   4   5   6   7   8   9 
------------------------------------------------------------------------------------------- 

 
  



The dataset “LQR Control Design for Augmented Lateral Design Model” performs the LQR control 
design using the plant “Augmented Lateral Design Model-2”. It uses the C matrix for criteria which is 
Identity and the (9x9) weight matrix Qc penalizes the individual states. The (2x2) matrix Rc penalizes 
the two controls, which are: aileron and rudder activity. The weight matrices are already set in the 
systems file. The LQR program generates the (2x9) state-feedback matrix Kpr that stabilizes the plant 
by closing the control loop between the state-vector and the two aerosurface inputs. The gain matrix 
is also saved in the systems file under the title “LQR State-Feedback Control for Augmented Lateral 
Design Model”. The matrix Kpr and the lateral analysis model are also saved in Matlab format as 
“Kpr.mat” and “vehi_lateral.m” respectively for further analysis. 

 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Lateral Design Model     
Plant Model Used to Design the Control System:  Augmented Lateral Design Model-2                                                                                                              
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc9      State Weight Matrix Qc (9x9)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc2      Control Weight Matrix Rc (2x2)                                                                                                                
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kpr      LQR State-Feedback Control for Augmented Lateral Design Model                                                                         
------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Augmented Lateral Design Model 
Matrix Kpr 
------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Missile with Wing Lateral Analysis Model 
System 
Vehi_lateral.m 
------------------------------------------------------------------------------------------- 
END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END 

 
 
6.3.3.2 Lateral Simulation 

The closed-loop simulation model “Lateral_Sim.mdl” in Figure 6.3.9 is located in folder “Control 
Analysis\LQG\ Examples\Missile Control Design\Lateral LQR” and it is used to analyze the system’s 
response to gusts and to heading commands. The 9-state-feedback loop is closed via matrix Kpr which 
includes: φ-integral, ψ-integral, δaileron and δrudder feedback in addition to the feedback from the 
original vehicle states: (φ, p, ψ, r, β). The heading direction is ξ=ψ+β. The heading error is converted 
into a simultaneously applied roll and yaw attitude command which makes the vehicle to perform a 
coordinated roll/ yaw turn with minimal β-transient. 

In Figure 6.3.10 the vehicle is commanded to perform a 10⁰ increment in ξ which is achieved by a 
coordinated roll and yaw command to minimize the β-transients because they are undesirable at high 
Qbar. In Figure 6.3.11 the missile is excited by a lateral wind-gust velocity impulse along the –y 
direction and it responds by rotating the aerosurfaces. 



 

Figure 6.3.9 Roll and Yaw Axes Closed-Loop Simulation Model “Lateral_Sim.mdl” 

  



 

 

Figure 6.3.10 Missile Responds to 10⁰ Heading Command. Performs Coordinated Roll/ Yaw Maneuver (mostly roll) to 
Change its Heading. Beta Transient is minimized by the Coordinated Roll/ Yaw Turn 

  



 
Figure 6.3.11 Missile is excited by Lateral Wind-Gust from the right side, along –Y, causing –Y Acceleration. It also 
causes Negative Roll and Positive Yaw due to the Vertical Stabilizer. Beta is Initially Negative because it does not see 
the Wind due to (NoWind Alpha/ Beta) Definition in the Data. The aileron and Rudder accordingly respond to 
counteract the Vehicle Roll and Yaw Rates 



 
6.3.3.3 Roll/ Yaw Stability Analysis 

The system stability is analyzed in the frequency domain by calculating the Nichols plot from the 
open-loop Simulink model “Open_Lateral.mdl” shown in Figure 6.3.12. The script file “frequ.m” 
calculates the frequency response across one of the loops, the one which is opened while the other 
loop is closed. The aileron is opened and the rudder is closed in this case to analyze roll axis stability. 
The model is modified to check the yaw loop stability by opening the rudder and closing the aileron 
loops. The model includes the two actuators and low-pass filters. The loop is broken between the 
low-pass filter output and the corresponding actuator input. Figure 6.3.13 shows the LQR control 
system’s stability in the Roll and Yaw directions. 

 

Figure 6.3.12 Open-Loop Model “Open_Lateral.mdl” used for Roll and Yaw Stability Analysis 



 

Figure 6.3.13 Nichols Plots Showing Stability of the LQR Control System in the Roll and Yaw Axes. The System also has a 
Short-Period Modes at 1.2 and 1.4 (rad/sec) 


